Annual reports on NMR spectroscopy

Volume 25

ANNUAL REPORTS ON

NMR SPECTROSCOPY

This Page Intentionally Left Blank

ANNUAL REPORTS ON

NMR SPECTROSCOPY

Edited by

G. A. WEBB

Department of Chemistry, University of Surrey, Guildford, Surrey, England

VOLUME 25

Harcourt Brace Jovanovich, Publishers

London • San Diego • New York Boston • Sydney • Tokyo • Toronto

ACADEMIC PRESS LIMITED 24-28 Oval Road, LONDON NW1 7DX

U.S. Edition Published by

ACADEMIC PRESS INC. San Diego, CA 92101

This book is printed on acid free paper

Copyright © 1993 ACADEMIC PRESS LIMITED

All Rights Reserved

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording, or any information storage and retrieval system without permission in writing from the publisher

A catalogue record for this book is available from the British Library

ISBN 0-12-505325-8 ISSN 0066-4103

Phototypesetting by Alden Multimedia Ltd, Northampton Printed by Hartnolls Limited, Bodmin, Cornwall

List of Contributors

- L. Stefaniak, Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- G. A. Webb, Department of Chemistry, University of Surrey, Guildford, Surrey GU2 5XH, England.
- M. Witanowski, Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.

Preface

Annual Reports on NMR Spectroscopy contain several reports in earlier volumes on the very important topic of nitrogen NMR. The present volume consists of an update on these, the most recent of which appeared in Volume 18 published in 1986. The main aim of this account is to provide some coverage of the literature which has appeared since then. Once more I am very pleased to welcome Professors Stefaniak and Witanowski as my coauthors on this review. I would also like to take this opportunity to thank them most sincerely for their kind cooperation during the period of production of the present volume.

University of Surrey Guildford, Surrey England G. A. WEBB February 1992

Contents

List of Contributors				
Preface				
Nitrogen NMR Spectroscopy				
M. WITANOWSKI, L. STEFANIAK and G. A. WEBB				
1. Introduction 2 2. Theory of nitrogen NMR parameters 3 3. Calibration techniques and sign conventions 11 4. Experimental techniques 14 5. General considerations of nitrogen shieldings 34 6. Some notes on nitrogen NMR in individual groups of molecules and ions 47 7. Some notes on 15 N coupling constants 70 8. Relaxation phenomena 80				
List of tables				
Tables 1 to 34				
Addendum on ¹⁴ N NQR and ENDOR				
References				
Index				

This Page Intentionally Left Blank

Nitrogen NMR Spectroscopy

M. WITANOWSKI, L. STEFANIAK

Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland

G. A. WEBB

Department of Chemistry, University of Surrey, Guildford, Surrey, England

1.	Introduction			
2.	Theory of nitrogen NMR parameters	3 4 8 10		
3.	. Calibration techniques and sign conventions			
4.	Experimental techniques	14 15 25		
	crystals	30 31 32		
	4.6. Dynamic nitrogen NMR	33		
5.	General considerations of nitrogen shieldings	34 34 36 36 41 45		
6.	Some notes on nitrogen NMR in individual groups of molecules and ions	47 47 48		
	6.3. Amido moieties	40		

	6.4.	Amino acids, peptides, proteins and related structures	50
	6.5.	Azido, isocyanato, cyanato, isothiocyanato, thiocyanato	<i>5 A</i>
		groups and corresponding ions	54
	6.6.	Cyanides, isocyanides, fulminates and related structures	55
	6.7.	Nitrogen-containing heteroaromatic systems	56
	6.8.	Nucleosides, nucleotides, flavins and related systems	59
	6.9.	Phosphazenes and related structures	61
	6.10.	,	61
	6.11	Sulphur-nitrogen bonds	62
		Nitro groups and nitrates	63
		Diazo structures, diazonium ions and diazoates	64
	6.14.	Azo, azoxy, azodioxy compounds, diazenes, triazenes and	
		tetrazenes	65
	6.15.	Nitroso compounds, nitrosoamines, nitrites and related struc-	
		tures	66
	6.16.	Dinitrogen and its complexes, diazenido complexes and	
		related structures	67
	6.17.	Nitrogen oxides and nitrogen-oxygen ions	68
		Nitrosyl, thionitrosyl and nitride complexes	69
	6.19	Vitamins, drugs and medicines	69
7.	Some	notes on ¹⁵ N coupling constants	70
	7.1.	^{1}J (^{15}N – ^{1}H)	70
	7 <i>.</i> 2.	^{2}J ($^{15}N-X-^{1}H$)	72
	7.3.	$^{3}J(^{15}N-X-Y-^{1}H)$	72
	7.4.	Long-range ¹⁵ N- ¹ H couplings	73
	7.5.	^{1}J (^{15}N – ^{13}C)	73
	7.6.	Carbon-nitrogen couplings across more than one bond	74
	7 <i>.</i> 7.	¹⁵ H- ¹⁵ N couplings	75
	7.8.	¹⁵ N- ³¹ P couplings	76
	7.9.	¹⁵ N- ¹⁹ F couplings	77
	7.10.	¹⁵ N couplings to other nuclei	78
_			0.0
8.		ation phenomena	80
	8.1.	¹⁴ N relaxation	80
	8.2.	¹⁵ N relaxation	81
	Table	s 1–34	85
	Adde	ndum on ¹⁴ N NQR and ENDOR	429
	Refer	ences	431
	Y		4.00

1. INTRODUCTION

Our main aim in preparing this review is to attempt to extend the comprehen-

sive survey of nitrogen NMR spectroscopy we have presented in our earlier accounts. 1-5 Taken together with the previous reports this review increases the literature coverage of nitrogen NMR to a period of 40 years from 1950 to 1990. Our most recent report⁵ dealt with the literature appearing between late 1980 and the end of 1983. Thus the present review addresses the progress made during the past seven years. It is an ineluctable fact that during this period the applications of nitrogen NMR have continued to advance on many fronts. Progress has been recorded in such a wide variety of areas that we feel it inappropriate to consider coverage to the same degree of thoroughness in all of them. Thus exceptis excipiendis we have taken our remit to include more detailed accounts of specific interests. Among these are an indication of the specific assets of nitrogen NMR in dealing with problems of structural elucidation; a consideration of the importance of solvent effects on nitrogen NMR shieldings as a means of gaining insight into molecular interactions, and recent developments in the study of tautomeric equilibria using nitrogen NMR data in combination with those of other nuclei. Particular attention is to be paid to nitrogenous heterocycles and heteroaromatic compounds, including mesoionic structures and those commonly found in systems of biological interest. Applications of nitrogen NMR data to problems of molecular recognition are also to be mentioned.

As in our earlier accounts consideration is given to studies dependent upon either, or both, of the ¹⁴N and ¹⁵N isotopes. Emphasis is given to the importance of the lone-pair electrons, which are responsible for rendering the NMR parameters of nitrogen much more sensitive to changes in molecular environment than are the corresponding parameters of the commonly studied ¹H and ¹³C nuclei.

Without wishing to claim access to an unusual degree of prescience we feel that it is highly likely that nitrogen NMR spectroscopy will continue to play a leading, and expanding, role in molecular science for a number of years hence.

2. THEORY OF NITROGEN NMR PARAMETERS

The basic theory of NMR parameters has been presented in our earlier reports¹⁻⁴ and covered in some detail in a monograph.⁶ Thus, with a view to being fairly efficacious, only passing reference to the theoretical backgrounds of nuclear shielding spin-spin coupling and relaxation interactions is made here.

2.1. Calculations of nitrogen shielding

Nuclear shielding calculations usually consist of the evaluation, and summation, of some positive diamagnetic terms and some negative paramagnetic contributions to the total shielding. A comparison of the various shielding expressions for nitrogen atoms in different chemical environments shows that, in general, the diamagnetic contributions remain relatively constant whereas variations in the paramagnetic contributions account for the observed shielding differences.

The individual gauge for localized orbitals (IGLO) procedure has been used to calculate the nitrogen shielding for a number of molecules. Although reasonably successful for calculations of carbon shieldings this approach is less satisfactory when applied to nitrogen shieldings. Perhaps the neglect of correlation effects, involving the nitrogen lone-pair electrons, goes some way to accounting for the observed discrepancies between calculation and experiment.

In the case of NSF, NSCl and NSF₃, the calculated nitrogen shielding for NSF is too small by about 700 ppm when compared with the experimental value.⁷ Unfortunately no experimental nitrogen data appear to be available for NSCl or NSF₃. IGLO results have been presented⁸ for NFH₂, NF₂H, NF₃ and CF₃CN. The replacement of H by F in NH₃ reduces the nitrogen shielding by about 200 ppm in NH₂F and by additional amounts of 123 ppm and 39 ppm, respectively, in NHF₂ and NF₃. The calculated results for these molecules are found to be rather basis set dependent and in fairly satisfactory agreement with experiment.

Another report covers the application of the IGLO procedure to calculate nitrogen shieldings for some amines, aziridine, some nitriles, an isonitrile, diazomethane, hydrazine and some diazenes. The agreement between calculation and experiment is more satisfactory for the singly bonded nitrogen atoms than for the multiply bonded ones, the least satisfactory agreement being observed for the nitrogen atoms in nitrogen-nitrogen multiple bonds. The results are found to be fairly basis set dependent. However, even if large sets, close to Hartree–Fock quality, are used, the calculated shieldings of multiply bonded nitrogen atoms are too small owing to an overestimation of the paramagnetic contributions.

Similar conclusions are reached from IGLO calculations on some azines and azoles. ¹⁰ In this case it is reported that the disparity between the observed and calculated nitrogen shieldings is less pronounced for the partial N-N double bonds in conjugated rings than for genuine N-N multiple bonds. The dominating role of the nitrogen lone-pair electrons is noted for the pyridine-type nitrogen atoms. However, the calculated pyridine-type nitrogen shieldings differ from experiment by more than 120 ppm.

It is found that the lone-pair contribution to the shielding is highly anisotropic and this governs the direction of the principal components of the nitrogen shielding tensors.

Cytosine, uracil, thymine, adenine and guanine have formed the basis of further IGLO calculations.¹¹ To obtain a reasonable agreement with the experimental nitrogen shieldings a basis set of triple zeta quality, and polarization functions, become necessary. Even for calculations using larger basis sets deviations of up to 45 ppm exist between the calculated and observed nitrogen shieldings. This is especially noticeable for the pyrrole-type nitrogen nuclei.

Nitrogen protonation shifts are calculated for adenine protonated at N-1, N-3 and N-7. By comparison with the experimental results it is predicted that the second adenine protonation site is N-3 whilst N-7 has only a marginal involvement.

In general it seems that IGLO calculations of nuclear shielding are to be preferred to coupled Hartree-Fock methods using a common gauge origin. However, for nitrogen the results are not entirely satisfactory even when extended basis sets are employed.

Some time-dependent Hartree–Fock calculations on N_2 have appeared;⁶⁷ the calculated paramagnetic contribution to the nuclear shielding is significantly overestimated. A similar conclusion¹⁰ is reached from the IGLO calculations on N_2 . A closer approximation to the experimental result is obtained when a complete active space multiconfiguration time-dependent Hartree–Fock calculation is performed.⁶⁷ Polarization propagator theory has been used to calculate the paramagnetic contribution to the nitrogen nuclear shielding in N_2^{71} and HCN.⁷² Results are reported both in the first-order approximation, which is equivalent to the coupled Hartree Fock (CHF) method, and in the second-order polarization propagator approximation (SOPPA). The difference between the two sets of results for each molecule represents the shielding from correlation effects. This difference is found to be large for both molecules. The SOPPA nitrogen shieldings are -72.2 ppm and -17 ppm for N_2 and HCN, respectively, both of which are in good agreement with experiment.

The localized orbital/local origin (LORG) procedure has been applied to the calculation of nitrogen shieldings in ethylene imine and diazirine.⁶⁸ In general the shielding results produced by LORG and IGLO calculations are in close agreement. An advantage of these approaches is that the results may be discussed in terms of particular electronic excitations. In the case of diazirine, large nitrogen shielding contributions arise from the lone-pair orbitals as well as from the ring bonds.⁶⁸ It is noted from the LORG calculations that the shielding anisotropy and the antisymmetric component of the shielding tensor both arise from paramagnetic contributions. However, the

two are not related, as demonstrated by the diazirine results where the in-plane anisotropy is small and the in-plane antisymmetric component is large.⁶⁸

A comparison of the results of LORG and IGLO calculations of ¹⁵N isotropic shieldings for pyridine and some azines shows that the two sets of calculated data are normally in good agreement with each other. However, with respect to the observed shieldings, variations of up to about 80 ppm are observed when comparison is made with the calculated results. ⁷⁰ Larger variations are found between the results of LORG calculations and those measured for the nitrogens of 1,2,4-triazine. ⁷⁰

Ditchfield's method¹² for calculating nuclear shieldings using gauge included atomic orbitals (GIAO) has been applied to the Watson-Crick base pairs.¹³ Shielding variations due to intermolecular hydrogen bond formation between the two complementary bases are analysed as arising from geometric effects, polarization effects and those due to charge transfer and exchange. It appears that the polarization term plays the major role in accounting for the nitrogen shielding differences upon hydrogen bond formation.¹³ These results are based upon the use of a minimal set of Gaussian functions which produces variable agreement between the calculated and observed relative nitrogen shielding data both within the base molecules and between the purine and pyrimidine base pairs. Similar calculations have been applied to the hydration of formamide and imidazole. ¹⁴ For both the formamide-(H₂O)₄ and imidazole-(H₂O)₂ systems the largest contribution to the nitrogen shielding hydration shift is found to be due to the polarization interaction. Calculations of the various shielding tensors of nucleic acids have been reviewed.¹⁵ The results obtained show, at best, a rather mixed agreement with the observed nitrogen shieldings of nucleosides and nucleotides.

The shielding model introduced by Ditchfield¹² has been employed¹⁶ in conjunction with basis sets of intermediate size to determine the shieldings, and shielding dependence upon bond modification, for NH₃, N₂, HCN and CH₃NH₂. The calculated nitrogen shieldings and their anisotropies compare favourably with the available experimental data. The calculated first and second shielding derivatives, with respect to bond lengthening are negative. This suggests that the nitrogen shieldings for these molecules are expected to display a negative temperature coefficient.

Similar calculations have been reported for the same four nitrogen compounds as well as for N₂O and CH₃CN.⁶⁹ A major difference is that locally dense basis sets are employed for the atom containing the nucleus of interest. In general the agreement of the calculated nitrogen shieldings with experiment is not good, owing to the calculated paramagnetic contribution being too large. Ab initio SOS-CI calculations of the nitrogen shielding of N₂H₄ have been reported as a function of the dihedral angle between the

lone-pair electrons on the nitrogen atoms.⁷³ A nitrogen shielding variation of about 7 ppm is predicted between the *cis* and *trans* forms, whereas the corresponding change in the shielding anisotropy is about 11 ppm.

Theoretical discussions of nitrogen nuclear shielding are most frequently based upon the results of semiempirical molecular orbital calculations. As noted previously⁵ the INDO/S parameter set appears to be fairly successful in describing the excited molecular states which make significant contributions to the important paramagnetic shielding terms. Calculations based on the INDO/S procedure, together with Pople's shielding model,¹⁷ have been employed in making the nitrogen NMR signal assignments in some monocyclic azoles,¹⁸ some 1-hydroxybenzotriazoles,¹⁹ some 3-hydroxyindazole derivatives,²⁰ some fused polyazaheterocyclic ring systems,²¹ some benzimidazolones,²² some mercaptotetrazoles,²³ some 1-hydroxybenzimidazoles,²⁴ some 1,2,4-triazoles and related compounds,²⁶ some heteroaromatic compounds²⁷ and dibenzo[1,3a,4,6a]tetrazapentalene.²⁸ In a similar manner, some CNDO/S parametrized shielding calculations have been used for assignment purposes for some 5-substituted tetrazoles.²⁹

The solvaton model has been used in conjunction with INDO/S calculations in studies on the influence of solvent polarity on nitrogen shielding for 2-methyl-2-nitrosopropane,³⁰ t-butyl nitrite,³¹ methyl nitrate,³¹ 1,1-dimethyl-azoethane,³¹ methyl nitrite,³² methyl isothiocyanate,³² some alkyl cyanides³³ and pyridine *N*-oxide.³⁴ The significance of the results of these calculations is discussed later.

Finite perturbation theory, together with INDO parameters, has been employed for calculations of the nitrogen shieldings of acetyl-Ala-Gly-NHMe, acetyl-Ser-Gly-NHMe, acetyl-Gly-Ala-NHMe and acetyl-Gly-Ser-NHMe in order to assist in the assignment of signals for *Bombyx mori* silk fibroin protein.³⁵ A similar approach has been used for calculations on a dipeptide fragment in a study of the conformational dependence of ¹⁵N chemical shifts of the α-helix and β-sheet forms of some homopolypeptides.⁷⁴ A MNDO-GIAO procedure, based on Ditchfield's approach,¹² has been applied to the calculation of the nitrogen shieldings of NH₃, CH₃NH₂, N₂H₄, C₂H₅CN, pyrrole and some azines.³⁶ The overall agreement between calculation and experiment appears to be satisfactory. CNDO/BW calculations have provided a realistic account of the effect on the nitrogen shielding of pyridine due to adsorption at the surface of silica.³⁷ Similar calculations, using CNDO/Z parameters, have been reported for some *para*-substituted benzenediazonium salts.⁷⁵

As discussed elsewhere^{5,6} the use of Pople's shielding model¹⁷ can lead to a possible interpretation of variations in nuclear shielding due to changes in local charge densities, bond orders and the energies of electronically excited

states. A priori there is no reason to expect a good correlation between charge density and nitrogen shielding for a given series of molecules. However, such a correlation may occur when the bond order and excitation enregy contributions to the shielding are either constant or vary in a cancelling manner. This appears to be the case for selected alkylamines, nitroalkanes, isonitriles and azines.³⁸ It is claimed that an increase in the nitrogen π charge density corresponds to an increase in shielding, whereas deshielding is observed if an increase in σ charge density occurs.

By means of an independent particle model an approximately linear relationship between the first ionization potential and nuclear shielding has been predicted.³⁹ Application to some 4-substituted pyridines reveals the existence of the predicted correlation. A solvent cavity model is incorporated to account for the solvent-induced changes in nitrogen shielding. These changes are discussed in terms of the solvent-dependent HOMO energy for pyridine in solvents with different dielectrics.³⁹

MM2 force field calculations have been applied in a study of the nitrogen shieldings of some saturated amines. ⁴⁰ A correlation is found between the local steric Van der Waals energy and the nitrogen shielding. For a series of 35 nitrogen nuclei the root mean square error is 5.9 ppm. Repulsive Van der Waals interactions appear to give rise to nitrogen deshielding and attractive interactions to shielding. The attractive potential leads to an expansion of the nitrogen atomic orbitals and thus to a decrease in the paramagnetic shielding term. Hence the γ shielding effect is associated with an attractive interaction. Similarly, β -effects are attributed to repulsive interactions, which are larger than the attractive ones, and lead to orbital contraction and nitrogen deshielding due to an enhanced paramagnetic contribution.

2.2. Calculation of nitrogen spin-spin couplings

The spin-spin coupling interaction between a pair of nuclei is usually expressed as the sum of contact, orbital and dipolar terms. The expressions for these terms are discussed elsewhere and are not reproduced here. ^{6,41,42}

Various perturbation techniques may be encountered in the evaluation of the spin-spin interaction expressions. Additionally, the relevant eigenvalues and eigenvectors may be calculated at various levels of approximation. Large-basis-set *ab initio* calculations of spin-spin couplings have become more reliable in recent years.

By means of second-order polarization propagator calculations, using an extended basis set, the $^{15}N^{-14}N$ spin-spin coupling of N_2 has been evaluated. The calculation shows that the contact contribution is 0.82 Hz, the orbital contribution is 3.35 Hz and the dipolar term yields -1.57 Hz, giving a total

of 2.60 Hz which compares with the experimental value of 1.8 \pm 0.6 Hz. It is of interest to note that the contact term makes the smallest contribution to this spin-spin coupling interaction. Often the contact term is taken to dominate one-bond spin-spin couplings. This is an assumption which needs to be treated with caution for couplings between two non-hydrogen nuclei.

The positive sign calculated for ${}^{1}J({}^{15}N{}^{-14}N)$ is reproduced in some *ab initio*, equations-of-motion, calculations on hydrazine, diazene, isodiazene, the azide ion and nitrogen.⁴⁴ The sign of ${}^{1}J({}^{15}N{}^{-14}N)$ is expected to be positive irrespective of the bond multiplicity and the geometrical arrangements around the nitrogen atoms. The only exception is for the *trans*oid arrangements of hydrazine. This is in agreement with the experimental data reported for a *trans*-diazene.⁴⁵ *Ab initio* SCF-CI calculations of the contact and orbital contributions to the various spin-spin couplings in $H_2C{}=NH$ and HCN show that all of the terms calculated can make significant coupling contributions.⁷⁶

For larger molecules semiempirical molecular orbital techniques are normally used. INDO parametrized calculations of $^{15}N^{-15}N$ and $^{15}N^{-13}C$ spin-spin couplings have been reported for 3-methyl- and 3,6-dimethyl-pyridazines. Reasonable agreement is found between the calculated and observed couplings. INDO calculations of $^{15}N^{-13}C$ couplings have appeared for a number of molecular conformations in order to study the dihedral angle dependence and for some cyanides and merocyanines. Similar calculations have involved the use of partially restricted molecular orbitals. The procedure permits a study of the σ and π transmitted components of $^{15}N^{-13}C$ and $^{15}N^{-14}$ spin-spin couplings. Qualitatively satisfactory agreement with experiment for a collection of molecules is reported.

 $^{1}J(^{31}P^{-15}N)$ data have been qualitatively interpreted by means of CNDO/2 calculations on some N-methylimide diphosphoric acid derivatives. ⁵⁰ Calculations on some silylamines have assumed that the contact term dominates the $^{1}J(^{29}Si^{-15}N)$ interaction. ⁵¹ It is claimed that the coupling is very sensitive to the extent of $d\pi$ -p π bonding.

The lone-pair overlap theory has been envoked to account for a throughspace ¹⁹F-¹⁵N coupling.⁵² This appears to account for the value of 22.4 Hz found for the ¹⁹F-¹⁵N coupling in 3,4-dihydro-8-fluoro-5-methyl-1(2H)naphthalene oxime, compared with 3.2 Hz for the corresponding coupling in o-fluorobenzaldehyde oxime.

A simple sum-over-states model appears to account for the effect on the contact contribution to spin-spin couplings of various lone-pair influences. The point is illustrated by reference to a number of one-, two- and three-bond couplings involving nitrogen nuclei. INDO-SOS calculations show that the contact interaction makes the major contribution to $^{1}J(N-C)$ of some parasubstituted benzenediazonium salts.

2.3. Calculations of nitrogen electric field gradients

In contrast to the quantum-mechanical description of nuclear shielding and spin-spin coupling, nuclear relaxation processes are usually considered on the basis of quasiclassical mechanics. However, quadrupolar relaxation is usually the dominant process for ¹⁴N nuclei. This depends critically upon the electric field gradient present at the relaxing nucleus. Such field gradients are amenable to molecular orbital calculations.

A calculation⁵⁴ on N⁺, using a full valence shell and full configuration interaction atomic wavefunctions, leads to an electric field gradient of -0.94 ± 0.01 au, the resulting ¹⁴N nuclear quadrupole moment being predicted to be $(2.07 \pm 0.04) \times 10^{-30} \,\mathrm{m}^2$. This compares with a value of $2.05 \times 10^{-30} \,\mathrm{m}^2$ from a fully numerical and large-basis-set calculation on NO⁺ and N₂. ⁵⁵ Comparable large-basis-set calculations, ^{56,57} with f functions on nitrogen and d functions on hydrogen and with configuration interaction, have been reported for NH₃. The best value for the ¹⁴N quadrupole moment from these calculations is $2.08 \times 10^{-30} \,\mathrm{m}^2$. A similar value of $(2.05 \pm 0.02) \times 10^{-30} \,\mathrm{m}^2$, is obtained from calculations using extensive Gaussian basis sets on N₂, NO⁺, NO, CN, CN⁻, HCN, HNC and NH₃. ⁵⁸ The same procedure has been used in a study of the changes in the electric field gradients at the ¹⁴N nuclei, induced by hydrogen bonding, in the complexes N₂—HF, N₂—HCl, (HCN)₂ and NH₃—HCN. A favourable comparison with the corresponding microwave results is obtained. ⁵⁹

Other ab initio molecular orbital calculations have been concerned with the electronic distribution around ^{14}N nuclei as estimated from microwave and NQR data. Triple zeta functions have been employed in such calculations on N_3^- , HN_3 , NCN_3 and H_3CN_3 and for a series of nitriles. 61

Large-basis-set calculations of electric field gradients reveal the importance of intermolecular interactions in determining the differences between microwave and NQR data for the gas phase and solid state, respectively, in the case of pyrazole, 62 maleic hydrazide, 63 formamide 4 and acetamide. 64 Similar calculations have been reported for some imidazolium cations 8 and some cyclic amides and thioamides. 79 The 14N electric field gradient in nitriles has been calculated from an *ab initio* procedure using localized orbitals. 80 The effect of substituents on the electric field gradient is found to result mainly from the polarization and conjugation of the C-N bonds with a small contribution from the nitrogen lone-pair electrons. An examination of the basis set dependence of *ab initio* calculations of electric field gradients has revealed the importance of using large basis sets when possible. However, for bigger molecules mixed basis sets, rather than minimal ones, are recommended. 65 Semiempirical molecular orbital methods have also been considered for 14N electric field gradient calculations. 66 In general the semiempirical results

compare qualitatively with those from ab initio double zeta basis set calculations and are better than the results found when smaller basis sets are used.

3. CALIBRATION TECHNIQUES AND SIGN CONVENTIONS

The problem of referencing nitrogen NMR shieldings has been adequately dealt with in refs. 5 and 4, and we will consider here only some aspects thereof that are relevant to recent research in nitrogen NMR. We employ consistently the sign convention that ascribes the *plus* sign to the direction of *increasing* magnetic shielding, and we simply use the term "nitrogen shielding" rather than "nitrogen chemical shift", in order to avoid confusion, since the latter term is often associated with a reverse sign convention. Arguments in favour of our choice, which retains the sign of the nuclear magnetic screening constant σ with respect to any reference value thereof, have been presented elsewhere (ref. 5, p. 18).

The use of *internal* referencing procedures, where the standard is dissolved in the sample examined, has practically been abandoned in nitrogen NMR, save for few exceptions, since variations induced in the nitrogen shielding of a standard by molecular interactions in liquids and solutions are quite remarkable, usually 10-40 ppm. Sometimes it is tempting to use the resonance of NH₄⁺, that may be present in biochemical samples, as internal reference, but this practice can hardly be recommended in view of the variations in the nitrogen shielding concerned (Table 2). Another demerit of internal standards comes from the fact that they simply contaminate the sample, and can affect the nitrogen shieldings in the latter. However, this technique also has an appeal which lies in getting rid of any bulk magnetic susceptibility effects which are inherent in external referencing procedures. The latter effects are a particular nuisance in the case of paramagnetic samples. Since the range of nitrogen shieldings in such samples is usually much larger than that for diamagnetic substances, and the precision requirements can be something like ± 2 ppm, it may be safer to employ an internal reference, provided that the reference concentration and the solvent are the same throughout the series of samples examined, and the reference employed is calibrated against a primary standard such as neat liquid nitromethane. The idea of internal referencing of nitrogen shieldings has recently gained some momentum, since molecular nitrogen (dinitrogen, N₂) is present in practically all solutions and its concentration is high enough to give a clear, sharp signal in ¹⁴N NMR spectra, and it would be quite easy to expose samples to ¹⁵N-labelled N₂ for ¹⁵N NMR measurements. Such an inert internal standard would afford a good method of referencing nitrogen shieldings provided that the shielding in nitrogen N₂ is immune to solvent effects.

The recent data presented in Table 31 (notes (b) and (c)) show that it is not quite the case, particularly if bulk susceptibility corrections are taken into account, and the variations span a range of about 2 ppm. Nevertheless, this is probably the best internal reference for nitrogen NMR, and it can compete with external references used without bulk susceptibility corrections.

The external referencing technique, where typically a set of coaxial tubes is employed, with the reference in the inner tube, and the sample in the annulus, is used almost invariably in present-day nitrogen NMR spectroscopy. An ideal solution would be to use concentric spherical sample/reference containers, in order to nullify the effects of any magnetic bulk susceptibility difference between the sample and the standard. Such measurements have actually been carried out, using high-precision ¹⁴N NMR, for a number of substances which are potential standards in nitrogen NMR spectroscopy (see Table 1, and references therein). In practice, however, cylindrical coaxial tubes are used, and this results in the appearance of bulk susceptibility effects in the observed, apparent shielding differences. The effects depend on the difference in the relevant susceptibilities, but they are also critically affected by the orientation of the external magnetic field with respect to the axis of the concentric tubes. If the orientation is parallel, such as that in superconducting solenoids, the error is twice as large and of opposite sign with respect to the perpendicular orientation which is characteristic of electromagnet systems. This seemingly obvious point is raised here since nowadays a considerable majority of nitrogen NMR measurements are performed using cryomagnet systems, but many authors do not seem to be aware of the necessity of allowing for this and are quite adamant in employing various "conversion factors", those brought from old measurements where electromagnet systems were used. While it is not improper as such, it simply leads one into errors whose expressions include three susceptibilities, those of the sample, of the actual reference, and of the primary reference, according to schemes IVc and IVd in Table 1. This table shows expressions for the errors involved in various calibrating schemes using the external referencing technique in coaxial tubes. Schemes I and II apply also to the situations where a given nitrogen shielding is measured directly against the primary standard, e.g. neat liquid nitromethane, so that ref. II = ref. I. A way around the problem of bulk susceptibilities is to use a secondary standard whose susceptibility is equal to, or close to, that of the sample, and then to employ a true (intrinsic) conversion constant from Table 2 in order to refer the measured value to the primary standard (scheme II, Table 1). The expressions in Table 1 are based on susceptibility values in the SI system of units, such as those reported in ref. 5, p. 221.

If we exclude brominated solvents, and if we do not need to use schemes IVc or IVd, the largest error due to bulk susceptibility effects is about 2 ppm

for superconducting magnet systems, and about 1 ppm for electromagnets. All this applies to samples and references which do not contain *paramagnetic* impurities or additives. The latter are used frequently, as relaxation reagents, in natural-abundance ¹⁵N NMR.

We recommend neat liquid nitromethane, MeNO₂, as a primary external reference for nitrogen shieldings, according to considerations of various standards presented elsewhere (ref. 5, pp. 27-29). In addition to the latter, there is another point concerned with recent measurements of isotope effects on the nitrogen shielding in MeNO₂ (Table 26, footnote (B)). Since it is convenient when the standard used also provides a deuterium lock signal, deuterated nitromethane can be used for this purpose, since its shielding does not differ significantly (-0.038 ppm) from that of CH₃NO₂. If one employs nitromethane in some solvent, e.g. deuterated acetone, it is better to prepare a rather dilute solution and use a true conversion constant (Tables 2 and 26), since solvent-induced shifts in the nitrogen shielding of MeNO₂ cover a range of about 10 ppm (ref. 81). It is not recommended to add, for example, 10-20% C₆D₆ to nitromethane, since one then has to interpolate between the shielding in neat nitromethane (arbitrarily set to zero) and that of its dilute solution in benzene (+4.4 ppm).

Nitromethane as a direct external reference accounts for about 50% of recent measurements of nitrogen shieldings, but some of these are reported after recalculation vs liquid NH₃ standard, taken at +380.2 ppm from neat nitromethane. The latter value, uncorrected for bulk susceptibility effects (Table 6), comes from an electromagnet spectrometer system, while the values recalculated were mostly measured in cryomagnet systems, and therefore we use the term fictitious ammonia standard in comments to the tables in such instances. Needless to say, such recalculations are simply confusing and can hardly be recommended. Liquid ammonia as such has rarely been used as a reference, in about 8% of cases, but even then one cannot be quite sure whether it was actually employed.

If dilute solutions of samples are measured, it is quite justified to assume that the bulk susceptibility involved is practically that of the solvent employed. For dilute aqueous solutions, which are common in biochemical investigations, it is advantageous to use analogous solutions of reference substances, in order to get rid of bulk susceptibility effects on the shieldings, but it is recommended that the standards be chosen from those in Table 2, for which true shieldings relative to neat liquid nitromethane are available. If one is careless about concentrations, pH, and gegenions in reference solutions, the uncertainty involved in any attempt to bring the shieldings to a common scale, such as that based on the nitromethane reference, can easily exceed 10 ppm; this is particularly the case for NH₄⁺, NO₃⁻ and HNO₃ (Table 2). Attention is drawn to a considerable difference in the NH₄⁺ nitrogen

shielding between solid ammonium nitrate and solid ammonium chloride, which are frequently employed as external references for solid-state spectra.

For solid samples, which are usually packed or machined into a cylindrical shape whose axis of rotation is tilted at a magic angle with respect to the vector of the external magnetic field (MAS spectra), bulk susceptibility corrections seem to be negligible. Bulk susceptibility effects should actually vanish for an infinitely long cylinder which is spun at the magic angle, and experimental results obtained for neat liquid nitromethane (ref. 82, see also Table 2) indicate that this seems to hold even for rather short cylinders. Thus, various solid reference substances (Table 2) seem to have a sound footing in recalculations of nitrogen shieldings to the nitromethane scale. Solid NH₄C1 (+341.2 ppm shielding with respect to neat liquid nitromethane) can be recommended for solid-state nitrogen NMR, because of the small width of its ¹⁵N resonance. But the same state of the small width of its ¹⁵N resonance.

There are reasons to believe that the *absolute* nuclear screening (shielding) constant σ for the nitrogen nuclei in neat liquid nitromethane, i.e. that referred to bare nitrogen nuclei, is about -130 ppm (ref. 5, pp. 17-30, and references therein), and this can give rough estimates of absolute shieldings in other molecules.

The influence of temperature variations on nitrogen NMR shieldings, and also those of reference substances, can lead to quite measurable shifts of the resonance signals involved. This sounds rather obvious, but sometimes one does not realize that proton decoupling dissipates power into the sample, and that it is large enough to shift the signals via the temperature dependence of nitrogen shieldings. This point has been raised recently⁸² and it was shown that the effect is rather negligible for neat liquid nitromethane (ca. +0.03 ppm) but is about +0.3 ppm for neat liquid formamide in proton-decoupled MAS spectra with respect to those without proton-decoupling. The relevant temperature coefficients are +0.0045 ppm K⁻¹ for neat nitromethane, and +0.0089 ppm K⁻¹ for neat formamide, but the latter has a specific inductive heat capacity which is three times that of nitromethane. This factor should also be taken into consideration in selecting reference substances for nitrogen NMR shieldings, and neat nitromethane seems to be a good choice also from this point of view.

4. EXPERIMENTAL TECHNIQUES

The properties of the naturally occurring nitrogen nuclei, ¹⁴N (99.64%, I = 1, non-zero quadrupole moment) and ¹⁵N (0.36%, $I = \frac{1}{2}$, negative gyromagnetic ratio) have already been presented in ref. 5, pp. 31-64, together with a detailed discussion of various experimental methods involved in

nitrogen NMR spectroscopy; we consider here only some new trends and developments.

4.1. Spectra of liquids and solutions

As far as ¹⁴N NMR is concerned, the pulsed Fourier-transform (PFT) technique is commonly employed, but in order to obtain precise values of nitrogen shieldings from ¹⁴N NMR spectra one should apply lineshape fitting procedures, with the possible exception of some scanty cases where the resonance signals are sharp enough, i.e. the concomitant rates of ¹⁴N quadrupole relaxation are slow. 14 N NMR offers a good sensitivity for small and medium-sized molecules, where the signal half-height widths are often below 1 kHz, particularly at high magnetic fields (>7T). In such cases, it is easy to obtain good spectra within a couple of minutes for solutions whose concentrations are of the order of 0.1 m. If the signal width is a few tens of hertz, as can happen for some types of molecules and ions, particularly in nonviscous solvents, that limit can easily be pushed down to about 0.001 m. A major drawback of ¹⁴N NMR lies in the fact that it is difficult or impossible to resolve, even by lineshape fitting, signals of comparable widths which are close to each other; on the other hand, if the widths are vastly different, it is feasible in ¹⁴N NMR spectra to resolve signals which have even exactly the same position on the shielding scale. Spin-spin coupling patterns appear rather exceptionally in 14N spectra, owing to the usually efficient quadrupolar relaxation mechanism for ¹⁴N nuclei. Among such exceptions to the rule, one should notice the observation of ${}^{1}J({}^{14}N-{}^{31}P)$ in pyrrole moieties bound to phosphorus.⁸³ A new technique, which is still in its infancy, seems to bring some hope for experimental measurements of indirect (J-type) spin-spin couplings where one or two of the nulei involved are quadrupolar. 84-87 This relies on the use of supercritical (or close-to-critical) fluids as solvents, such as CO₂, ethane or ethylene, at around their critical temperatures. Examples include the ¹⁴N spectra of some nitrogenous compounds like N₂O, acetonitrile, and nitro compounds, and these yielded the relevant ¹⁴N-¹⁴N, ¹⁴N-¹H and ¹⁴N-¹⁷O couplings, owing to drastically reduced quadrupolar relaxation rates and the subsequent appearance in the spectra of the corresponding spin-spin coupling patterns. The apparently old-fashioned continuous-wave (CW) technique seems to show some of its merits in the field of ¹⁴N NMR, particularly in the differential saturation variant (ref. 5, p. 56; ref. 4, p. 23) coupled with the use of concentric spherical sample/reference containers. Such applications include precise quantitative measurements of the dimerization of nitroso compounds³⁰ as well as bulk-susceptibility-free measurements of nitrogen shieldings in a variety of nitrogenous compounds.88-90

In 15 N NMR, the PFT technique is employed exclusively, since it gives a considerable advantage over continuous-wave from the point of view of sensitivity (narrow resonance signals within a large spectral width) and because of the ease of various manipulations which take advantage of nuclear spin-spin interactions. However, 15 N NMR spectroscopy is generally hampered by low sensitivity which results from the low magnetic moment of 15 N, its negative gyromagnetic ratio, its natural abundance of only ca. 0.4%, and $T_1 >> T_2$. The problem of optimizing the measurements from the point of view of sensitivity has already been considered in detail in ref. 5, and we will survey here only the recent trends in experimental techniques.

A simple remedy for the inherently low sensitivity of ¹⁵N NMR measurements is to enrich the substances examined with the ¹⁵N isotope. Practical consequences of this are shown⁹¹ in the case of pyrimidine, where a single exciting pulse yields a decent, proton-coupled ¹⁵N spectrum of a 100% labelled sample. Quite often, the enrichment does not have to come close to 100%, and 5-10% labelling is satisfactory. Selective ¹⁵N-labelling is of utmost importance in some spectral assignments, examining reaction pathways, etc. If the former is combined with selective ¹³C-labelling at adjacent sites, various polarization transfer techniques allow one to trace, by means of ¹⁵N spectroscopy, the fate of carbon-nitrogen bonds in chemical and biochemical systems. Another measure acting against the adverse effects of relatively long spin-lattice relaxation times of 15 N (as compared with the corresponding T_2 times) relies on the use of flow-cells, 92 where the sample flows through a probe system which includes a premagnetization chamber and an "observation volume". Such a cell has been described and actually employed for obtaining a ¹⁵N spectrum of N-methylimidazole. The ratio of the premagnetization to the observation volume, and the flow rate, play a role which is analogous to that of the relaxation delays in conventional PFT spectroscopy. Flow cells not only reduce the effects of long T_1 times but can also quench nuclear Overhauser effects, which are frequently a nuisance rather than an asset in ¹⁵N NMR because of the negative gyromagnetic ratio of the 15 N nucleus.

Still another method for sensitivity enhancement in ¹⁵N NMR, often by an order of magnitude, makes use of magnetic polarization transfer (PT), where either the polarization of strong nuclear magnets (usually protons) is transferred to other nuclei, e.g. ¹⁵N, which is called a *straightforward transfer*, or vice versa, which is a *reverse transfer*, where one detects indirectly the ¹⁵N spectrum concerned via proton NMR spectral transitions. The latter solution is gaining popularity in modern NMR spectrometers since it provides an additional gain in sensitivity over the straightforward transfers.

For one-dimensional (1-D) ¹⁵N spectra, the INEPT (insensitive nuclei enhancement by polarization transfer) pulse sequence is commonly employed

(see ref. 5, pp. 43-50). Its typical version is non-selective (polarization transfer from all protons which fulfil certain requirements on the magnitude of ¹H-¹⁵N coupling in a given experiment), and either non-refocused (protoncoupled 15 N spectra with phase shifts and inversions of multiplet components) or refocused (proton-decoupled and proton-coupled ¹⁵N spectra, the latter with the same phase of multiplet components, e.g., upright absorption). The method has to be adjusted, as most PT methods have, a certain range of magnitudes of proton-nitrogen spin-spin couplings which are involved in the transfer. At the outset of INEPT applications in ¹⁵N NMR, one-bond proton-nitrogen couplings, ¹J(¹⁵N-¹H), of about 90 Hz were used for that purpose, and this is still a routine way of enhancing the ¹⁵N resonances of NH-type nitrogenous moieties in molecules. The effectiveness of the method can be illustrated with the 15 N INEPT spectrum (via 1 J(NH), refocused) of ¹⁵N-labelled trimethoprim, ^{93, 94} where the sample concentration was only 0.0005 m. Further examples of analogous spectra of ¹⁵N-labelled compounds include gramicidin A;95 phage P22 c2 repressor, 0.006 m;96 oxytocin and 8-arginine vasopressor, 0.0016 m. 97 As far as natural-abundance ¹⁵N INEPT spectra via ¹ J(NH) are concerned, there are also some outstanding results from the point of view of sensitivity: turkey ovomucoid protein, 0.0015 M, 98 and bilirubin systems, 0.034 M. 99-101 In the latter case, 99 a modified version of INEPT was employed, that including the SINEPT option, where one makes use of the sinewave-like response of INEPT enhancement to obtain the variation of the preset magnitude of proton-nitrogen coupling, thus providing a one-dimensional substitute for 2-D proton-nitrogen spectra. The ${}^{1}J(NH)$ INEPT can be employed to differentiate between NH, NH₂, and NH₃ moieties as such, and with respect to non-protonated nitrogen atoms; it can also yield information about whether a given NH moiety undergoes proton exchange, since the latter quenches the polarization transfer via ¹ J(NH). Numerous examples of such applications include purine systems, ¹⁰² flavins, ¹⁰³ fulvic acid, ¹⁰⁴ nucleosides, ^{105,106} pyridone, ¹⁰⁷ protonated Schiff bases, ¹⁰⁸ vancomycin, ¹⁰⁹ silk fibroin peptides, ¹¹⁰ copolypeptides, ¹¹¹⁻¹¹³ filamentous bacteriophage M13 coat protein, 114, 115 glyoxal-guanine adducts, 116 nitrotyrosine, 117 aminoazirines, 118 aziridines, 119 aminoboranes, 120 and aminonitrones.121

The INEPT method is not limited to the polarization transfer via $^1J(NH)$, and long-range couplings between 1H and ^{15}N have recently been employed on a large scale for that purpose, in spite of some pessimistic opinions expressed earlier. It is now fairly common in ^{15}N NMR to employ INEPT pulse sequences adjusted to the relatively large, 5-18 Hz, $^2J(NH)$ and $^3J(NH)$ couplings that exist in aza-aromatic ring systems (pyridine and other azines, azoles, and related structures, including nucleosides, pterins, etc.). $^{105, 122-128}$ Much smaller $^2J(NH)$ and other long-range couplings, within a range of

1-3 Hz, have also turned out to be quite useful in ¹⁵ N INEPT for non-protonated nitrogen atoms. ^{83,109,129-143}

So far, we have considered non-selective INEPT, while its selective variant, that based on "soft" (i.e. relatively long) 1H pulses, yields resonance enhancement only for those ¹⁵N nuclei which are coupled to protons covered by a narrow range of excitation by the soft pulse, and which fulfil the conditions on the magnitude of the coupling with respect to the relevant, preset interpulse delays. Examples can be found in the field of azine systems, 144 azoloazines¹⁴⁵ and peptides.¹⁴⁶ The latter case is especially important, since longrange INEPT provides spectral access to non-protonated nitrogen atoms in peptide links; the resonances of the latter cannot be enhanced by ${}^{1}J(NH)$ polarization transfer. It has been demonstrated that non-selective longrange INEPT yields unwanted effects of 'H magnetization dephasing during the interpulse delays involved in the INEPT sequence. A method has been reported, based on a combination of INEPT and Spin Echo Fourier Transform (SEFT) sequences, that allows one to distinguish various ranges of magnitude of long-range proton-nitrogen couplings. 147,148 Analogous to selective INEPT are selective population transfer (SPT) techniques via ¹ J(NH). ¹⁴⁹

Specific applications of INEPT involve the observation of weak satellites that result from 15 N coupling to 29 Si or 209 Pb. $^{99,150-154}$ There are also examples of INEPT where the polarization transfer to 15 N takes place from nuclei other than protons, e.g. via $^2J(^{31}P^{-15}N)$ in P-Au-N moieties of phthalimido complexes, 155 and via $^2J(^{19}F^{-15}N)$ of about 52 Hz in fluoroderivatives of azine ring systems. 156

A competitive method for executing polarization transfer to ¹⁵N is the well-known DEPT sequence (distortionless enhancement by polarization transfer). This was employed, via ¹J(NH), for 0.006 M solutions of ¹⁵Nlabelled nucleosides, ¹⁵⁷ for ¹⁵ N-labelled flavins, ¹⁵⁸ vitamin B₁₂, ¹⁵⁹ and protein backbone:160,161 in the last case, the DEPT method was also used to distinguish the mobility of individual parts of the backbone, and adjusted such that the ¹⁵N resonances from rigid parts appeared in the upright adsorption mode while those from mobile parts were inverted. DEPT via long-range protonnitrogen couplings has also been employed successfully in heteroaromatic systems, ^{122,162,163} and for the nitro group in biosynthetically labelled 2-¹⁵NO₂propanoic acid. 164 A generalized version of DEPT, DEPT-GL, was employed in order to simultaneously optimize the measurement for both ${}^{2}J(NH)$ of about 7.5 Hz and ¹ J(NH) of about 90 Hz; 165 this is important for identification of glycine units, which include -CH₂-NH- moieties, in peptide chains. Theoretical simulations of long-range DEPT and INEPT, using the density matrix formalism, combined with model experiments, suggest that ¹⁵N long-range INEPT is more promising. ¹⁶⁶

Heteronuclear magnetization transfer by fulfilment of the Hartmann-Hahn condition is usually limited to solid-state experiments, but recently it has been adapted to ¹⁵N-labelled His units in peptides in solution¹⁶⁷ and turned out to be slightly more effective than INEPT in ¹⁵N signal intensity enhancement.

Two-dimensional (2-D) experiments have recently been engaged on a large scale in ¹⁵N NMR spectroscopy, particularly for peptide systems and other biologically important structures. Such methods are usually involved in tracking down proton-nitrogen connectivities. Straightforward experiments are those where the 2-D spectra are detected by collecting free-induction decays within the 15N frequency domain, while reverse measurements use detection within the ¹H domain. The latter have been introduced into common practice quite recently, with the advent of specially constructed probe heads, where the decoupler coils are fed with 15N resonance frequencies. The reverse methods give, in principle, a considerable gain in sensitivity over the straightforward techniques. Usually, 2-D ¹⁵N/¹H pulse sequences involve polarization transfer and multiple quantum filtering (zero and double quantum, in most cases); the latter enables one to filter out "singlets", i.e. the resonances of nuclei which are not coupled within the frequency framework concerned, for example the proton resonances of ¹⁴N—H moieties in reverse 2-D ¹H-¹⁵N NMR measurements. Special sequences whose aim is quenching of the unwanted signals of solvents (usually those of water) are also important in reverse 2-D methods; recently, the use of gradient pulses for that purpose¹⁶⁸ seems to enable one to carry out the ¹H detection in reverse 2-D and 3-D experiments, including ¹⁵N, even right at the place occupied by the proton signal of water. Typical 2-D experiments have to be adjusted to a certain range of $J(^{15}N^{-1}H)$ couplings, and these we will call heteronuclear 2-D COSY (correlation spectroscopy); sometimes, they are known as 2-D FE (forbidden echo) methods. One can employ proton-nitrogen decoupling at appropriate stages of measurements and then the method yields a map of singlet cross-peaks (decoupled COSY); otherwise, two-dimensional multiplet clusters appear which bear information about the couplings involved (coupled COSY). Theoretical simulations of 2-D spectra, using the density matrix approach, have been presented169 by means of the SPHINX algorithm, which covers also cases of tightly coupled nuclei.

Examples of *straightforward* (i.e. ¹⁵N-detected) 2-D COSY via ¹J(NH), at natural abundance of ¹⁵N, include: 0.05 M gramicidin A, 42 h of accumulation, ¹⁷⁰ and 24 h; ¹⁷¹ 0.07 M antamanide; ¹⁷² bilirubin systems; ¹⁷³ 0.15 M vancomycin; ¹⁰⁹ cyclosporin A; ¹⁷⁴ cyclic heptapeptides; ¹⁷⁵ and phosphazoles. ¹⁷⁶ Analogous methods have been applied for ¹⁵N-labelled samples of proteins of molecular weight 6000–155000; ¹⁷⁷ yeast tRNA; ¹⁷⁸ Escherichia coli 5S RNA, 120 nitrogen bases; ¹⁷⁹ filamentous bacteriophage coat protein in

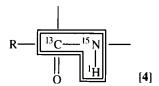
micelles;^{160, 180} and 0.02 M actinomycin D.¹⁸¹ One can also employ *long-range* proton-nitrogen couplings in straightforward COSY, as has been done for peptides,¹⁸² using the well-known COLOC sequence; analogous measurements were done for nitrocellulose and other saccharide nitrates.^{183, 184} While straightforward COSY is, in theory, less sensitive than its reverse variant, it has been argued that the difference can be offset by larger sample volumes in the former method, and the difficulties inherent in the latter as far as effective suppressing of solvent peaks is concerned for aqueous solutions which are typical in peptide chemistry and biochemistry.¹⁷⁷

However, most recent 2-D COSY measurements involving ¹⁵N have been performed by means of the reverse (i.e. ¹H-detected) version, using multiple quantum filtering and therefore called HMQC (heteronuclear multiple quantum correlation). 185-187 Most often, 1H-15N HMOC employs one-hond couplings, ¹ J(NH), of about 90 Hz, and there have been examples of such measurements at natural abundance of ¹⁵N, e.g. 0.011 M human Ahx little gastrin hormone in micelles, ¹⁸⁸ where HMQC was aided with double INEPT (NEMESIS); Met-enkephalin; ¹⁸⁹ 0.04 M Leu-enkephalin; ¹⁹⁰ hen egg white lysozyme; ¹⁹¹ bovine pancreatic trypsin inhibitor; ¹⁹¹ 0.15 M turkey ovomucoid third domain; 98 bleomycin A₂; 192 3-aminoacrylic esters; 193 pentacarbonylchromium aminophosphane complexes;¹⁵² model peptides;¹⁸⁷ oligonucleotides;¹⁹⁴ and trypanothione disulphide. 195 However, labelling with 15 N is often unavoidable for complete or nearly-complete spectral assignments in the case of large molecules, and a good example is provided by the HMOC spectra of 0.023 M bovine pancreatic trypsin inhibitor whose molecular weight is about 6500. Further examples of ¹⁵N labelled samples and ¹H-¹⁵N HMQC spectra thereof include: 0.002-0.003 M T4 lysozyme, mol. wt 18 700; 198-200 0.006-0.009 M flavodoxin from Anabaena 7120, mol. wt 21000;103,201,202 0.002- $0.003 \,\mathrm{M}$ ferrocytochrome c_2 , 177, 203 Escherichia coli thioredoxin, 204 tRNA, 205-207 and 5S RNA; 208 0.015 M DNA-binding protein ner from phage Mu; 209 human N-ras p21 protein, mol. wt 21 000;²¹⁰ Pf1 coat protein;²¹¹ 0.0026 M M13 coat protein;²¹² repressor protein;⁹⁶ Lys and Leu units in λ -cro repressor;²¹³ staphylococcal nuclease, 214-216 where 127 residues out of 136 have been assigned in the backbone; *TaqI* endonuclease;²¹⁷ 0.02 M actinomycin D;¹⁸¹ aridicin aglycon complexed with model peptides;²¹⁸ purine pancreatic phospholipase A₂,²¹⁹ amanitin and its analogues;²²⁰ human carbonic anhydrase II;²²¹ oxytocin and 8-argininevasopressin;⁹⁷ adenosine and deoxycytidine;²²² adenosine in A-G and A-C mispairs in some duplexes;²²³ DNA oligomers;²²⁴ uridine units in Escherichia coli tRNAPhe obtained from hisT mutants;225 nitrogenous metabolites of yeast;²²⁶ and cyclic structures containing N and S.²²⁷ A scheme has been proposed²²⁸ for assignments of proton and nitrogen resonances in peptide systems by varying 15N label contents and recording the intensities of ¹H/¹⁵N correlation peaks in the relevant HMQC spectra.

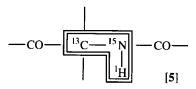
In reverse heteronuclear COSY (HMQC), long-range spin-spin couplings, such as ² J(NH) and ³ J(NH), can also be exploited and this has been done for DNA-binding protein ner from phage Mu, ²²⁹ staphylococcal nuclease, ²³⁰ cytochrome c-553, ²³¹ flavodoxin, ²³¹ and ¹⁵ N-labelled leucine units in P22c2 repressor protein. ⁹⁶ The use of such couplings is important for peptide system investigations, from the point of view of tracking intra-residue and interresidue connectivities such as [1], rather than those within NH moieties. This can be done directly, by HMQC oriented for the two-bond and three-bond couplings concerned, or by relayed HMQC²²⁹ where the information is passed through ¹ J(NH) from nitrogen to proton in NH, and then from the latter to the target proton, by the corresponding proton-proton coupling, for example [2]. Quite recently, reverse COSY (from the point of view of ¹⁵N NMR) has been used in measurements of ¹³C/¹⁵N connectivities, via ¹³C detection and ¹ J(CN) couplings, in uniformly and selectively ¹³C/¹⁵N-labelled proteins, Anabaena 7120 ferrodoxin, ²³³ and acetamide. ²³⁴

More complicated schemes of relayed COSY include coherence transfer between protons through carbon-proton, carbon-nitrogen, and nitrogen-proton couplings, e.g. [3], and these can also yield nitrogen connectivities to carbon and hydrogen, as has been done for model tripeptides²³⁵ and polypeptides.²³⁶

coherence transfer
$${}^{1}H - {}^{13}C - {}^{15}N - {}^{1}H$$
[3]


While 2-D HMQC techniques involve sensitivity enhancements which are related to the one-dimensional DEPT, there seems to be a revival of reverse

2-D experiments, ¹H/¹⁵N, based on single quantum connectivities and INEPT-type polarization transfer, combined with water proton peak quenching sequences. These are called *HSQC* (heteronuclear single quantum correlation), methods, and their applications include: bovine pancreatic trypsin inhibitor;²³⁷ H-ras p21 protein, including labile NH protons;²³⁸ phosphotransferase protein III^{Glc};²³⁹ \(\lambda\)-cro repressor protein;²⁴⁰ and binding of metal ions to Escherichia coli ribonuclease HI.²⁴¹


Now we turn to three-dimensional (3-D) COSY in its reverse, HMQC variant, and divide this into hetero-hetero 3-D COSY, where three kinds of nuclei are involved (e.g. ¹⁵N, ¹³C and ¹H), and homo-hetero 3-D COSY, where proton-proton correlations are unfolded into the third dimension, that of ¹⁵N resonance frequencies. The additional dimension, with respect to 2-D experiments, offers a considerable aid in unravelling complicated spectra of large peptide systems, up to a molecular weight of about 25 000;²⁴² usually, ¹⁵N- and ¹³C-labelling is a prerequisite.

Hetero-hetero 3-D COSY, ¹H/¹³C/¹⁵N, proton-detected, via one-bond couplings, has been employed in nearly complete spectral assignments of backbone peptide units in 0.0007 M inflammatory protein C5a, mol. wt 8500, 177 h including 47 h of input-output operations;²⁴³ and in calmodulin, mol. wt. 16700, in 2 days.^{244, 245} The latter experiments included the following variants.

(i) *HNCO* - this correlates ¹H and ¹⁵N within a given NH moiety, and these with ¹³CO in the preceding amino acid residue [4].

(ii) HNCA – this yields intra-residue correlations [5], together with some weak correlations with C_{α} in the preceding unit.

- (iii) HCACO, which correlates NH protons with intra-residue carbons, but only those coupled to ¹⁵N.
- (iv) 3-D RELAY HCA(CO)N, which correlates ¹H/¹³C with ¹⁵N of the succeeding unit, i.e. [6] where the intervening nuclei act as relays.

(v) ¹⁵N HOHAHA HMQC, a homo-hetero 3-D experiment, which correlates ¹H and ¹⁵N in the system [7].

Homo-hetero 3-D COSY can be thought of as proton-proton 2-D COSY unfolded into the dimension of 15 N frequencies. This technique has been employed in the case of 0.002 M ribonuclease H²⁴⁶ (mol. wt. 17 600), labelled with 13 C and 15 N, where the proton-proton connectivities in [8] were resolved with respect to 15 N. Further examples include 15 N-labelled samples of model tripeptides, 247 CMP-KDO synthetase, 248 and interleukin-1 β from *Escherichia coli* (153 amino acid residues). 249 This scheme can also include relays, e.g. 13 C_{α}, as in the H(CA)NNH scheme²⁵⁰ that was employed for calmodulin 3-D spectra as an example of optimization of the method with respect to 13 C- 15 N-labelled peptide linkages. Three-dimensional 1 H/ 13 C/ 15 N experiments can also be adapted to measurements of long-range proton-proton couplings in peptides, $^{251-253}$ and for samples labelled with 15 N only. 254

Recently, four-dimensional (4-D) techniques have been introduced in protein research, ²⁵⁵ those based on the HCA(CO)N method described above. The fourth dimension is provided by the ¹³CO frequency domain, while the parent 3-D experiment uses the latter nuclei simply as magnetization relays. Such 4-D ¹H/¹³C/¹³CO/¹⁵N spectra were employed in unravelling the corresponding resonances and inter-nuclear connectivities in calmodulin. ^{255,256}

Measurements which bear some formal relation to homo-hetero 3-D COSY are those based on proton-proton 2-D NOESY (nuclear Overhauser effect correlation spectroscopy) resolved with respect to ¹⁵N frequencies.²⁵⁷

These can be called *IDNOESY* (isotope directed NOESY), where the isotope concerned is ¹⁵N. NOESY spectra are based on correlations where cross-relaxation processes and/or proton chemical exchange phenomena are involved. Under certain conditions, such spectra are commonly employed in estimating proton–proton distances in globular macromolecules, usually proteins. The unfolding into the relevant ¹⁵N resonance frequency dimension greatly facilitates such applications to peptide systems, and examples of these include: T4 lysozyme; ¹⁹⁸⁻²⁰⁰ staphylococcal nuclease; ^{215,258} inflammation protein C5a; ²⁴³ ribonuclease H; ²⁴⁶ interleukin-1 β ; ²⁴⁹ porcine pancreatic phospholipase A₂; ²¹⁹ DNA-binding protein *ner* from phage Mu; ²⁰⁹ and *Salmonella* phage P22 c2 repressor. ²⁵⁹

Various combinations of the 2-D, 3-D, and 4-D techniques described above have been employed recently in full or nearly full assignments of nitrogen shieldings (and those of the other nuclei concerned) in protein and peptide systems: Escherichi coli ribonuclase H, 260 oxidized and reduced forms of thioredoxin, 261 and apocytochrome b_{562} ; 262 ribonuclease T1; 263 Lactobacillus casei dihydrofolate reductase; 264 calmodulin; 245,256 oxidized flavodoxin from Anacystis nidulans; 265 interleukin-1 β ; 266 phosphotransferase protein III Glc ; 239 Bacillus subtilis enzyme III Glc ; and λ -cro repressor protein. 240

Finally, we turn back to 2-D ¹⁵N NMR in its less common variants and applications. 2-D ¹H/¹⁵N NOESY experiments have been performed for staphylococcal nuclease, ²⁶⁸ together with measurements of the relaxation times concerned. The use of pseudo-single-quantum COSY (PS-COSY) for ¹⁵N-labelled peptides shows that the method effectively removes dipolar broadening from the ¹H spectra of the ¹⁵NH peptide moieties, owing to the zero-quantum coherences employed. ²⁶⁹ A special case is presented by the 2-D ¹⁵N/¹⁵N exchange spectra of model peptides, ²⁷⁰ where the relations are based on *cis-trans* amide bond interconversions. One should also mention the two-dimensional version of SINEPT applied to pyridone; ²⁷¹ 1-D SINEPT has already been mentioned in considerations of INEPT pulse sequence applications in ¹⁵N NMR.

We shall also consider some substitutes for 2-D and 3-D methods in nitrogen NMR, those performed within the general scheme of *double* and *triple resonance*. The ¹H{¹⁵N} INDOR (internuclear double resonance) technique detects ¹⁵N resonance frequencies via ¹⁵N decoupling effects in ¹H spectra, by sweeping or incrementing the decoupling frequency, ²⁷¹⁻²⁷⁵ a special case is ⁶Li{¹⁵N} INDOR. ²⁷⁶ A modification of ¹H{¹⁵N} INDOR consists in recording *difference spectra*, where one subtracts undecoupled spectra from decoupled ones. The latter technique has been applied to large molecules: staphylococcal nuclease; ²⁷⁷ *Escherichia coli* RNA; ^{278,279} thioredoxin; ²⁰⁴ 7-¹⁵N-labelled guanosine oligonucleotides; ²⁸⁰ and yeast tRNA. ¹⁷⁸ Analogous triple-resonance experiments include: a pyridone derivative (¹⁵N-labelled) where

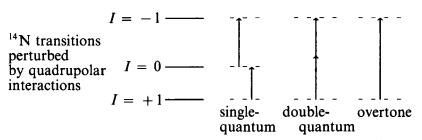


Fig. 1.

the ¹³C nuclei were noise-decoupled from protons and selectively decoupled from ¹⁵N, ¹³C{¹H, noise/¹⁵N, selective};²⁸¹ pyrimidine ring, ¹H{¹H, selective/¹⁵N, selective}, and ¹³C{¹H, noise/¹⁵N, selective}.²⁸² Such methods are also suitable for determining magnitudes and relative signs of the spin-spin coupling constants involved. Related to ¹H{¹⁵N} INDOR techniques is a report on the method of calibrating the ¹⁵N decoupler radiofrequency field strength.²⁸³

4.2. Solid-state nitrogen NMR

A great deal of nitrogen NMR investigation of solids has recently been carried out. As far as ¹⁴N NMR is concerned, some new techniques have been introduced. We start our considerations with something which is not actually solid-state ¹⁴N NMR but ¹⁴N NMR *imaging* of liquid N₂ in contact with a high-temperature superconductor.²⁸⁴ If a plastic rod is immersed in liquid dinitrogen, the image obtained shows a sharp boundary, but when a superconductor of the Y₁Ba₂Cu₃O_{7-δ} type is used, there is a dark region extending 5–8 mm into the liquid, owing to the high gradient of magnetic field in the vicinity of the superconducting solid which exerts strong bulk-susceptibility effects. This enables one to distinguish, by ¹⁴N NMR imaging, between the superconducting and non-conducting states at liquid nitrogen temperatures.

An interesting example of zero-field NMR is provided by proton-14 N double resonance in solid methylammonium perchlorate, which shows a high-temperature transition for the anion.

A novel approach to ¹⁴NNMR in solids is that based on *overtone* ¹⁴NNMR transitions²⁸⁶⁻²⁹⁰ at nearly twice the resonance frequency of ¹⁴N, which are detected indirectly via ¹H transitions and ¹H-¹⁴N dipolar couplings.

The overtone signals are broadened only by second orders in the quadrupolar perturbations (Fig. 1). This technique, when applied to single crystals, removes the large quadrupolar splittings involved, and reduces the spectral width from about 1.5 MHz for single-quantum ¹⁴N NMR to about 100 kHz for overtones. The method has been employed for investigations of peptide backbone conformations by two-dimensional ¹H/¹⁴N spectra ²⁹¹ and for 2-D ¹³C/¹⁴N spectra of crystalline amino acids, via ¹H/¹³C/¹⁴N triple resonance. ^{286,290}

More conventional ¹⁴N single-crystal spectra are typically employed in determinations of ¹⁴N quadrupole coupling, electric field gradient, and magnetic shielding tensors as well as in detecting molecular reorientations in crystals. Such studies include: L-asparagine monohydrate under high-power proton decoupling;²⁹² L-histidine hydrochloride monohydrate;²⁹³ KNO₃;^{145,294} silver, barium, and lead nitrates;²⁹⁵ ammonium perchlorate;²⁹⁶ and polychlorinated dinitrobenzenes.²⁹⁷ Effects of spin diffusion in single-crystal ammonium sulphate were examined by ¹⁴NNMR and the results were compared with theory, from the point of view of single- and double-quantum spin diffusion mechanisms.²⁹⁸ Expressions for ¹⁴N NMR lineshapes were derived²⁹⁹ for crystalline Me₄N⁺ZnCl₄ in the commensurate phase. A double-resonance ¹⁴N/¹H probe for crystal samples has been described.³⁰⁰

In some experiments, the NMR characteristics of ¹⁴N nuclei in solids can be obtained indirectly, e.g. the electric field gradient tensor at ¹⁴N via ¹³C CPMAS spectra (see below) and ¹³C-¹⁴N residual dipolar splittings. ^{301,302} Effects of ¹⁴N relaxation in the solid state have been observed for single-crystal alanine, via 2-D ¹³C/¹H spectra; and ¹⁴N-deuterium dipolar couplings were determined in urea-d₄ from deuterium quadrupole echo spectra. ³⁰⁴

¹⁴N NMR of powdery solids is also useful in gaining an insight into their structure. Merits and demerits of ¹H ← ¹⁴N magnetic polarization transfer (cross-polarization, CP) in such NMR measurements have been discussed in detail³⁰⁵ for amino acid residues in peptides, for glycine, and for ammonium sulphate. There is a problem in using rather high radiofrequency fields for executing such a transfer via single-quantum ¹⁴N transitions because of the large spectral width of the ¹⁴N frequencies involved, and the use of the corresponding double-quantum transitions seems to be a suitable solution. The latter problem is of the same nature as that considered in the case of overtone ¹⁴N NMR

Conventional ¹⁴N static (i.e. non-spun) powder NMR spectra are typically used for estimating electric field gradient tensor characteristics at ¹⁴N, as was the case for trifluoroaminoboranes³⁰⁶ and ammonium thiocyanate;³⁰⁷ and for the identification of reorientation transitions within solids: the β -phase of ¹⁴N₂ in liquid helium bath;³⁰⁸ ammonium thiocyanate;³⁰⁷ methylammonium nitrate;³⁰⁹ perovskites;³¹⁰ polycrystalline choline salts,³¹¹⁻³¹³ also in the presence of paramagnetic ions;³¹⁴ and phosphatidylcholine bilayers.³¹⁵

With ¹⁵NNMR in solids, there are obviously no quadrupolar effects save for those exerted by other nuclei. Single-crystal studies in ¹⁵NNMR are usually oriented towards magnetic shielding tensors of ¹⁵N, dipolar

couplings, and molecular motions within the crystal lattice. Usually, 15 N-labelling is employed. Investigations of this type include: ammonium perchlorate; 316 tris-sarcosine calcium chloride; $^{317, \, 318}$ peptides; 319 and 13 C- and 15 N-labelled glycylglycine- H_2 O-HCl. 320 A special case is the 15 N spectrum of the β -phase of solid 15 N $_2$ in a liquid helium bath, 321 where the signal width reached 4 kHz, and a comparison with the analogous spectrum of the 14 N isotopomer indicated that there is a significant difference in molecular rotations between solid 15 N $_2$ and 14 N $_2$.

Similar applications involve static powder ¹⁵N spectra and ¹⁵N MASS (magic angle spinning sidebands) spectra; in the latter the solid ample is spun at a magic angle with respect to the external magnetic field, but the rate of rotation is slow enough to generate families of sidebands which flank the central signals concerned. Examples of such studies by means of static powder spectra include: ferroelectric phase transitions at 130 K in trissarcosine calcium chloride; ³²² polypeptides; ^{319, 323} dipeptides; ³²⁴ Ala–Pro peptide linkages; ³²⁵ terminal glycine moiety in Boc-Gly-Gly-[¹⁵N]-Gly; ³²⁶ nylon-6; ³²⁷ asparagine, ³²⁸ ¹H-decoupled and dipole-modulated spectra; bacteriorhodopsin; ³²⁹ acetophenone oxime; ³³⁰ p-substituted benzonitriles; ³³¹ azobenzene; ³³² and KCN–KBr systems. ³³³ Extensive studies of this kind have been carried out for micelles and bilayers containing membrane-bound fd coat protein; ^{161,334-337} gramicidin A; ^{95,338,344} and a hydrophobic peptide, Boc-Leu-Phe-OMe. ³⁰⁹ Static ¹⁵N spectra of solid ¹⁵N¹⁴NO at low temperatures, under O₂ atmosphere, were employed in motion analysis in the solid. ³⁴⁵

While single-crystal ¹⁵N NMR measurements are usually better suited to the determination of the magnetic shielding anisotropy tensor orientation with respect to the relevant molecular frame, this can also be done with polycrystalline samples, as was shown in the case of L-[1-¹³C]alanyl-L-[¹⁵N]alanine, ^{346,347} where a ¹H-dipole-modulated, ¹³C-dipole-coupled ¹⁵N spectrum was measured.

¹⁵N MASS spectra have been employed for analogous purposes for ¹⁵N-labelled samples of bacteriorhodopsin;³⁴⁸ amminoplatinum complexes;³⁴⁹ l-aminoethylphosphonic acid, Ala-P;³⁵⁰ *p*-substituted benzonitriles;³³¹ ammonium thiocyanate;³⁵¹ and ammonium nitrate.^{352,353}

The largest area of applications of solid-state ¹⁵N NMR is concerned with the *magic angle spinning* (MAS) technique, which is usually combined with magnetic polarization transfer, usually from ¹H, by fulfilling the Hahn-Hartmann condition. This *cross-polarization* (CP) and MAS combination is conventionally abbreviated as CPMAS, with a tacit assumption that the spinning rate involved is high enough to preclude the appearance of significant spinning sidebands. The method gives high-resolution or nearly high-resolution ¹⁵N spectra of solids, and provides a powerful tool for insight into the solid-state structure of nitrogenous substances. There are some special

problems concerned with the cross-polarization transfer from ¹H to low-magnetogyric-ratio nuclei, such as ¹⁵N, and these have recently been considered.³⁵⁴

So far, there have been rather few applications of 15 N CPMAS NMR at the natural abundance of the isotope; these included: two types of environment for tetrapropylammonium cations occluded in MFI-type zeolites; 355 aminonaphthalene derivatives and the tetrazole anion; 356 indolinones; 357 trimethoprim-sulphamethoxazole complex; 358 α -helix and β -sheet structures in homopolypeptide polymers 74 and nylons; $^{359-362}$ synthetic and natural melanins; 363 elastin; 364 copper(I) complexes of 1,10-phenanthroline; 365 conducting polymers containing —CR=N—N=CR— units oxidized with iodine, 366 and their polyimine precursors. 367

In most cases, ¹⁵N-labelling is employed in ¹⁵N CPMAS NMR. This technique was used for observations of crystalline and amorphous domains in nylon-type polymers.³⁶⁸⁻³⁷⁵ Other polymer studies include polyaniline;³⁷⁶ acetonitrile polymers obtained in a plasma chamber;³⁷⁷ HCN polymers;³⁷⁸ nitrocellulose and nitramines, 379,380 polypyrrole, 381 and polypyrrolenemethine polymers;³⁸² allantoin;³⁸³ and tetracycline antibiotics.³⁸⁴ Investigations on a large scale have been carried out for peptide and protein systems; terminal 15 N-glycine units in di- and tripeptides, including hydrogen bond effects on the shieldings;³⁸⁵ carboxypeptidase A, ³⁸⁶ and ¹³C/¹⁵N-labelled glycyltyrosine as a substrate in a complex with the former, 387 15 N-labelled valine units in staphylococcal nuclease;³⁸⁸ [¹⁵N]His-57 in the catalytic triad of α-lytic protease³⁸⁹⁻³⁹¹ and analogous studies on serine protease;³⁹² cell-wall peptidoglycan in intact lyophilized cells of Aerococcus viridans, 393 and effects of penicillin on the peptidoglycan;³⁹⁴ tissue cultures of alfalfa, Medicago sativa; 395 nitrogen fixation by Methanobacterium halobium and Methanospirillum hungatei, 396 and also by Methanobacterium thermoautotropicum; 397 lyophilized cells of Klebsiella pneumoniae grown on labelled ammonium and dinitrogen;³⁹⁸ glyphosate metabolism in *Pseudomonas*;³⁹⁹ metabolism of [15 N]His and [15 N]Lys in insect cuticles, those of tobacco hornworm; 400,401 [15 N]Lys in collagen fibres; peat incubated with [15 N]glycine; 402 ammoniated straw; 403 melanoidins obtained from xylose and [15 N]glycine. 404,405 Other ¹⁵N-labelled systems of biological importance, studied by ¹⁵N CPMAS NMR, included DNA (uniformly labelled) in Escherichia coli infected with filamentous bacteriophage fd, 1-D and 2-D spectra, including effects of proton exchange among nitrogen atoms; 406 and bacteriorhodopsin systems, 329,407-409 also including effects of proton exchange.410

Studies on simpler chemical structures include aminophosphonic acids;⁴¹¹ azo hydrazone tautomerism in the solid state;⁴¹² azobenzene;^{330,332} phthalimide-Au-PEt₂ systems;⁴¹³ nitroguanidine;⁴¹⁴ silicon nitrides,⁴¹⁵ oxynitrides,⁴¹⁶ and YSiAlON nitride-type glasses.⁴¹⁷ In ammonium nitrate,^{353,418}

there was also the observation of nuclear Overhauser effects, ⁴¹⁹ contrary to the belief that motions in crystals are too slow to provide cross-relaxations. In ammonium sulphate ⁴²⁰ two inequivalent sites in the crystal have been detected, 0.3 ppm apart in the spectrum at 290 K, but 1.2 ppm apart at temperatures below the phase transition at 223 K – this is quite important from the point of view of calibration techniques for nitrogen shieldings in solid-state NMR, since ammonium sulphate is sometimes employed as a reference. Attention is drawn to the first report on the nitrogen shielding in an iminophosphonium cation, R-N\equiv P⁺, based on the ¹⁵N CPMAS NMR of a labelled sample. ⁴²¹

Applications of ¹⁵N CPMAS of labelled samples also include substances adsorbed on solids, such as ammonia and trimethylamine on zeolites;⁴²² pyridine on γ-alumina;⁴²³ and pyridine on coals.⁴²⁴ However, in some cases, conventional ¹⁵N NMR methods give resonance signals which are sharp enough to differentiate various environments of the adsorbate, like those for acetonitrile adsorbed on zeolites.⁴²⁵ The same may be true for objects like live rats⁴²⁶ where ¹⁵N-labelled glycine was detected in a specially constructed probe with a radiofrequency coil which was implanted between the liver lobes of the animal and fixed to the abdominal wall.

Especially important from the point of view of methodology are extensive studies on *dynamic effects* in variable-temperature ¹⁵N CPMAS NMR spectra of ¹⁵N-labelled molecular systems with intramolecular proton exchange pathways. ⁴²⁷⁻⁴³⁹ These will be considered in Section 4.6 on dynamic nitrogen NMR.

An interesting variant of ¹⁵N CPMAS NMR includes a delay introduced between the CP phase and acquisition, during which the ¹⁵N magnetization evolves under the influence of dipolar couplings with protons (protonnitrogen decoupling is turned off); this is called interrupted decoupling, dipolar dephasing, or dipolar rotational spin echo 15 N CPMAS. This can be employed for attenuating the signals of NH-type moieties with respect to those of non-protonated nitrogens, as was done for cured urea-formaldehyde resins;⁴⁴⁰ 4,4'-methylene-bis(phenyl isocyanate)-based resins;⁴⁴¹ phenolic resins cured with hexamethylene tetramine;⁴⁴² and polyimide polymers.⁴⁴³ Analogous experiments, with proton-proton couplings removed by means of multiple pulse irradiation, were used in studies of peptidoglycan mobility, 393 and effects on the latter of penicillin.³⁹⁴ Carbon-nitrogen dipolar couplings can also be used in such methods, for ¹³C/¹⁵N doubly labelled bonds, by performing CP from ¹H to either ¹³C or ¹⁵N, and then by leaving the relevant magnetization to evolve for a certain period under the influence of the dipolar coupling, as was done for solid peptide structures. 346,347 The latter technique is a substitute for double-cross-polarization methods which will be considered below. Related to the above are ¹³C-detected rotational-echo-doubleresonance ¹³C/¹⁵N measurements (REDOR), for ¹³C/¹⁵N-labelled bonds in alanine crystals^{444,445} and HCN polymers,⁴⁴⁶ where the ¹³C magnetization was dephased by ¹⁵N 180° pulses to yield the relevant dipolar carbon–nitrogen couplings; the latter were then used in estimations of carbon–nitrogen distances.

Double-cross-polarization ¹⁵N MAS NMR (¹⁵N DCPMAS) is employed typically for detecting and tracing the fate of individual, ¹³C/¹⁵N doubly labelled bonds, usually those involved in peptide linkages in solid samples, or those in such labelled amino acids which are fed to biological systems. The magnetization transfer, via cross-polarization, takes place in two steps, ^{446–448} usually along the pathway

$${}^{1}H \xrightarrow{CP} {}^{13}C \xrightarrow{CP} {}^{15}N$$

Such applications of ¹⁵N DCPMAS NMR include: methionine metabolism in soybean cotyledons;⁴⁴⁹ allantoin⁴⁵⁰ and alanine⁴⁵¹ metabolism in *Aerococcus viridans*; heteropeptide polymers;⁴⁵² and HCN polymers.⁴⁵³

Finally, we should mention the application of CPMAS in 14 N NMR, 454 where spin-rotational relaxation was examined in the rotor solid KCN; and a discussion 455 of the effects exerted on 13 C CPMAS NMR spectra by spin I=1 nuclei, such as 14 N.

4.3. Nitrogen NMR in partially oriented phases including liquid crystals

Partial orientation of molecules in solution can give spectral effects which resemble those characteristic of fully oriented solid phases. We start our considerations with molecular alignment that is effected by strong *electric fields*. Non-spun samples of neat liquid pyridine and pyrimidine, ⁴⁵⁶ placed in a field $E = 5.68 \times 10^5 \,\mathrm{V}\,\mathrm{m}^{-1}$ provided by gold-plated electrodes 3 mm apart, show signal doubling of ca. 250 Hz in ¹⁴N NMR as a manifestation of ¹⁴N quadrupole coupling and partial orientation of the molecules. Similar results were obtained for neat liquid nitromethane, ⁴⁵⁷ and for 2-D-propene-2-nitrile ($E = 8.1 \times 10^6 \,\mathrm{V}\,\mathrm{m}$, ⁻¹ spacing ca. 830 Hz). ⁴⁵⁸

More often, molecular alignment is effected in NMR experiments by the external magnetic field, via diamagnetic anisotropy of the solute concerned or by that of the solvent, usually a liquid crystal phase. In solutions of bacteriophage fd coat protein the ¹⁵N spectra show that the virus particles become oriented, ³¹⁹ particularly their Trp-26 sidechains; this orientation was employed for obtaining two-dimensional spectra of the nitrogen shieldings against the corresponding dipolar ¹H-¹⁵N splittings ("¹⁵N-¹H separated local-field spectra", as they were called). Similar spectra were obtained for ¹⁵N-labelled gramicidin A in oriented phosphatidylcholine bilayers, ^{342, 459, 460}

yielding information about torsion angles in the peptide backbone; and also for calcium and spermine interactions in such bilayers.⁴⁶¹ Quadrupole splittings were observed in the ¹⁴N NMR spectra of the choline moieties of the bilayers.^{462, 463}

¹⁴N NMR of partially oriented molecules and ions is typically employed for observations of ¹⁴N quadrupole splittings. Disodium cromoglycate (DSCG) liquid-crystal phase can dissolve inorganic salts; DSCG-H₂O solutions of ammonium and tetramethylammonium nitrates⁴⁶⁴ showed such splittings in the ¹⁴N spectra, thus indicating that the symmetry of the ammonium ions is distorted in such phases. Quadrupole splittings were also observed in the ¹⁴N spectra of acetonitrile in nematic phases,⁴⁶⁵ but an evidently anomalous value of the ¹⁴N quadrupole coupling constant in the molecule concerned was found in the thermotropic liquid crystals 2LI 1167 and Phase IV (Merck);⁴⁶⁶ the constant was linearly dependent on temperature – 170.8 kHz at 5°C to 205.2 kHz at 65°C – while gas-phase microwave measurements give a value of 489.4 kHz. Quadrupole splittings were observed in the ¹⁴N spectra of surfactants in lamellar lyotropic mesophases, including dimethyldodecylammonium bromide⁴⁶⁷ as well as dodecyl- and hexadecyl-bound NMe₃+C1⁻ moieties.⁴⁶⁸

 15 N NMR measurements for liquid-crystal solutions included 15 N- and 13 C-labelled HCN, 469 where 1 J(NH) was found to be negative; and phosphatidylcholine multilayers and bilayers in sonicated vesicles, 470 where the temperature-dependent 15 N resonance linewidths were used to monitor the "melting" of the liquid crystal phases concerned. Doubly 15 N-labelled N₂ in nematic phases, EBBA and Merck 2L 1132, shows a doublet in the 15 N spectrum whose spacing indicates that the anisotropy of the nitrogen shielding is 590 ± 50 ppm. 471

4.4. Quantitative nitrogen NMR

The problem of relationships between nitrogen NMR signal intensities and the relevant numbers of nuclei in a sample is quite complicated, since there are various other factors which can significantly affect the intensities. In ¹⁴N NMR, there are problems resulting from quite diversified quadrupolar relaxation times, and in ¹⁵N NMR serious difficulties arise from variable nuclear Overhauser effects upon proton decoupling, from relatively long T_1 relaxation times, from the low sensitivity of measurements at the natural abundance of the isotope, and from effects of various polarization-transfer techniques that are frequently employed. There are also some general problems concerned with the use of the pulsed Fourier transform technique with its inherent, non-linear phase drift across a spectrum, effects of pulse

breakthrough, and saturation effects which simply quench signals without inducing any signal broadening, thus quenching the corresponding integral intensities.

In quantitative ¹⁴N NMR, the best results seem to come from the oldfashioned, field-swept continuous-wave technique, in its differential saturation variant combined with lineshape fitting. This was applied to the dimerization equilibria of a nitrosoalkane, Bu^tNO, in various solvents;³⁰ an analysis of errors indicated that the percentage compositions assayed in that way were accurate within ± 0.9 to $\pm 0.1\%$. The effects of diversified relaxation rates of ¹⁴N have to be accounted for in any serious attempts at quantitative measurements, and a good example is also found in the studies of ammonia uptake by perfused rat salivary glands. 472 There have been numerous attempts at using ¹⁵N NMR spectra for at least semiquantitative monitoring of various reactions, most often in biological systems. However, examples where ¹⁵N NMR results are confronted with those from other methods often show significant discrepancies. In following the assimilation of ¹⁵NH₄ in Streptomyces venezuelae by 15N refocused INEPT spectra, with intensity calibration against a reference, ¹⁵N-labelled cyclo-(Gly-Pro-Gly)₂, a comparison with amino acid analysis showed overall discrepancies of 15-20%. 473 Similar inconsistencies were found in investigations on rat organs^{474, 475} by ¹⁵N NMR and by emission spectroscopy. It seems that without a suppression of nuclear Overhauser effects, ¹⁵N NMR should be rather hopeless from the point of view of quantitative analysis, but we should note a report⁴⁷⁶ on the assimilation of ¹⁵NH₄ by Beech, where a comparison of results obtained from conventional, proton-decoupled ¹⁵N spectra with those from gas chromatography combined with mass spectrometry shows deviations within only 10%.

In general, however, one should be cautious in assigning too much significance to quantitative analyses by ¹⁵N NMR alone, such as those reported for ammoniated straw; ⁴⁰³ silk fibroins; ^{110, 477} nitrogen fixation by methanogenic bacteria; ³⁹⁶ marine algae; ⁴⁷⁸ and nitration of hexachloro complexes of iridium. ⁴⁷⁹ More reliable are those where some intensity references have been employed, ^{398, 480, 481} but one should remember the limitations in accuracy that have been considered above.

4.5. Chemically induced dynamic nuclear polarization (CIDNP) in nitrogen NMR

Nitrogen resonance intensity enhancements which result from the involvement of radical pairs in the course of chemical reactions can be described by Kaptein's rules (see ref. 5, p. 63, and references therein). Applications to ¹⁵N CIDNP effects observed in photochemical dediazonation processes of

arenediazonium salt solutions^{75,482} show that the excitation goes first to singlet states. Analogous ¹⁵N CIDNP effects, both negative (enhanced emission) and positive (enhanced absorption), have been employed in following the mechanisms of nitration and subsequent nitro group migrations for *p*-nitrophenol,⁴⁸³ arylamines,⁴⁸⁴ mesitylene,⁴⁸⁵ durene⁴⁸⁶ and naphthalene,⁴⁸⁷ and also in investigations of 2,6-dichloro-*N*-nitroaniline rearrangements into the corresponding *C*-nitro isomers.⁴⁸⁸ However, recent results⁴⁸⁹ on the nitration of nitrobenzene, naphthalene and mesitylene with HNO₃ + MeSO₃H + NaNO₃ suggest that the contributions of radical-pair-mediated mechanisms in such reactions are fairly small. This seems to be a general problem with CIDNP effects in NMR, since they are large enough to monitor even quite marginal mechanisms of reactions.

4.6. Dynamic nitrogen NMR

A major advance in ¹⁵N dynamic NMR in the solid state has recently been made in the field of ¹⁵N-detected proton transfers in ¹⁵N-labelled molecules containing the tautomeric system shown in Fig. 2, where two protons can jump among four nitrogenous sites; the molecules concerned included porphins, phthalocyanins and related enamino-imino systems. ⁴²⁷⁻⁴³⁹ Theoretical derivations of the ¹⁵N lineshapes concerned for various proton-transfer mechanisms, confronted with variable-temperature ¹⁵N CPMAS spectra, were employed in detecting non-concerted double proton transfers in such systems. The dynamic behaviour of such spectra also led to the proposal of a novel, convenient NMR thermometer for variable-temperature CPMAS measurements in the range 86 K to 495 K.

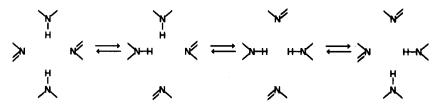


Fig. 2.

One should also notice the SELEX pulse sequence⁴⁹⁰ for selective observation of spin exchange among NH moieties in 2-D ¹⁵N spectra of solid samples, and the magnetization transfer from ¹H in hydration water to ¹⁵NH in solid hydrated proteins for estimating proton exchange rates.⁴¹⁰

For solutions, analogous exchange rates were monitored by timedependent INEPT enhancement decay of the ¹⁵N resonances of detergentsolubilized M13 coat protein, after dissolving it in water. ¹¹⁴ A special example of nitrogen dynamic NMR in solutions is that of NO₃⁻ exchange among diamagnetic and paramagnetic centres, which was monitored by dynamic ¹⁴N spectra, owing to the relatively small linewidths for the ion, and the large nitrogen shielding differences concerned.⁴⁹¹

5. GENERAL CONSIDERATIONS OF NITROGEN SHIELDING

5.1. Isotope effects on nitrogen NMR shielding

While primary isotope effects on nitrogen shieldings, i.e. those between ¹⁴N and ¹⁵N, are within the experimental errors involved in two independent measurements (see ref. 5, p. 66), secondary isotope effects – those induced by isotopic exchange in the vicinity of a nitrogen atom – can be measured with a high accuracy provided that the isotopomers concerned appear as separate resonances in a given nitrogen NMR spectrum. Methods based on comparing two or more spectra are rather unreliable, because of the errors concerned with their calibration (see Section 3) and even minor variations in experimental conditions (temperature, concentration, paramagnetic impurities, etc.).

Deuterium effects on nitrogen shieldings have already been observed in the NH₄⁺ ion, ca. + 0.3 ppm per each D atom introduced; and for ammonia, where the effects are twice as large, +0.65 ppm per D atom^{492,293} (see also ref. 5, p. 67). More recent measurements for the ammonium ion⁴⁹⁴ are essentially in accord with the older data, but they show minor variations of the effects between solutions in H_2O/D_2O and in 1 MHC1 or HNO₃. The latter measurements⁴⁹⁴ also provide data for a variety of nitrogenous structures:

Structure (solvent)	Deuterium isotope effect (ppm) on nitrogen shielding
Pyridine-d ₆ (neat)	+0.58
ND ⁺ in pyridinium ion (CF ₃ COOD)	+0.60
ND in pyrrole (CDCl ₃)	+0.24
PhNDMe (neat)	+ 0.70
PhND ₂ (neat, CDCl ₃)	+1.45, +1.09
PhND ₃ ⁺ (CF ₃ COOD)	+ 1.21
PhNDCOMe (CDCl ₃)	+0.62
PhNHCOCD ₃ (CDCl ₃)	-0.05
HCONDH (H ₂ O, DMSO)	+0.51, +0.56
HCOND ₂ (H ₂ O, DMSO)	+1.04, +1.09
CD ₃ CN (neat)	-0.16

The data also included CD₃NO₂, +0.07 ppm, but more recent measure-

ments⁴⁹⁵ of proton- and deuterium-coupled ¹⁵N spectra in a single batch show that the effect is only +0.038 ppm; this is important from the point of view of neat liquid nitromethane as a primary reference and a source of deuterium lock for nitrogen NMR spectra (Section 3). For N^{π} in histidine in ferricytochrome, ⁴⁹⁶ an effect of +2.5 ppm was observed for D_2O vs H_2O solutions, but this involved two independent spectra. A method was proposed ⁴⁹⁷ for estimating equilibria between NH and ND moieties in ammonium salts, on the basis of average shieldings observed, with respect to reference solutions in D_2O and in H_2O ; plots of the nitrogen shielding against the percentage of D_2O in water were non-linear, but this is again the case of measurements not on a single batch, where the relatively small isotope effects can be seriously affected by experimental errors. Deuterium effects on nitrogen shieldings in systems exhibiting azo-hydrazone tautomerism ⁴⁹⁸ shows a change in their signs between the tautomers involved [9].

Nitrogen-14 isotope effects on 15 N NMR shieldings are exemplified⁴⁹⁹ by 15 N \equiv 15 N in CDCl₃, $+0.061 \pm 0.002$ ppm with respect to 14 N \equiv 15 N; this led to an estimate of -912 ± 42 ppm per angstrom of the bond length, in accord with theoretical calculations which gave values within -640 to -1425 ppm.

The ^{13}C isotope effect on the nitrogen shielding of nitromethane⁴⁹⁵ was found to be small, +0.019 ppm.

Isotope effects of ¹⁸O on nitrogen shieldings have been found in the nitrite ion, NO_2^- , +0.15 ppm per ¹⁸O, and in the nitrate ion, NO_3^- , +0.06 ppm per ¹⁸O, and they were employed in following the fate of $H_2^{18}O$ and ¹⁵N¹⁶O₂⁻ in the oxidation of ammonia by Nitrosomonas europaea; ^{500,501} and the course of nitrite-to-nitrate oxidation by Nitrobacter vinogradskyi, ^{502,503} where the oxygen source turned out to be mainly $H_2^{18}O$. In 3-nitropropanoic acid, ¹⁶⁴ the effect on the nitrogen shielding is ca. +0.08 ppm per ¹⁸O. Such effects of ¹⁸O have been examined in a variety of molecules: ^{501,504,505}

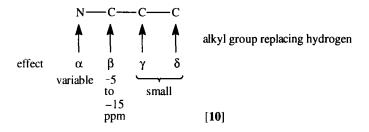
Molecule	¹⁸ O effect on nitrogen shielding (ppm)
MeCH=NOH	+0.069 to $+0.030$
Nitrobenzene	+0.075
1-Nitrobutane	+0.08
Isoxazoles	+0.153 to $+0.159$
Isoxazolines	+0.074
HCNO	+0.027

and the relatively large effect in oxazoles has been attributed to the short N-O bond in the aromatic ring. Effects on nitrogen shieldings induced by ¹⁸O are important, since they allow one to monitor ¹⁸O labels by NMR.

5.2. Shift reagents in nitrogen NMR

Lanthanide chelates usually bind to nitrogen atoms which bear lone electron pairs, and induce considerable shifts in the nitrogen NMR shieldings concerned, mostly via the contact mechanism (see ref. 5, p. 68, and references therein). Recently, the Co^{2+} ion has been proposed as a shift reagent for nitrogen NMR in aqueous solutions; ⁵⁰⁶ in ¹⁴N NMR measurements, the cobalt-to-substrate ratio can reach 4:1, inducing shifts of -25 ppm for glycerophosphorylcholine, +10 ppm for betaine, and +5 ppm for the ammonium ion, thus increasing the spectral resolution of the latter.

Another interesting approach relies on the use of silver salts, such as Ag(tfa), which bind to the π -electron systems of multiple and aromatic C-C and C-N bonds. ⁵⁰⁷ Such shift reagents act via the pseudo contact mechanism, and examples of the shifts induced are shown below.


Substrate (in CDCl ₃)	Ag(tfa) substrate ratio	Nitrogen shielding induced (ppm)
Azobenzene	0.15	+ 3.0
PhCN	0.15	+4.6
Thiazole	0.03	+1.8
Imidazole N-3	0.03	+3.0

5.3. Some general considerations of nitrogen shielding in diamagnetic species

The range of nitrogen NMR shieldings in diamagnetic compounds and ions,

referenced to that in neat nitromethane, is from about -600 ppm (aromatic nitroso compounds) to about +450 ppm (NH₃ as a ligand in ammino-type complexes), as was shown in ref. 5, where a large table of characteristic ranges for individual nitrogenous structures was also published. Quantummechanical calculations of nitrogen shieldings were considered in Section 1. but there have been also some attempts at correlating the shieldings with calculated electron charge densities at the relevant nitrogen atoms. All these show only local correlations, within closely related molecular structures, and their signs vary from one group to another; this evidently excludes the simple diamagnetic mechanism of nitrogen magnetic shielding as a source of the range observed. Such local correlations were found using ab initio quantummechanical calculations with a STO-3G minimal basis set of electron charge densities: for ring nitrogen shieldings in aminoazine heterocycles, 508 a parallel correlation, i.e. increasing electron charge at N → increasing nitrogen shielding, including also N-oxidation effects, but only for non-oxidized nitrogens; separate, parallel correlations³⁸ for alkylamines, R₃N, R₂NH, and RNH₂, where $R = CH_3$, $R'CH_2$, R'_2CH , and R'_3C , and also for azine heterocycles, and for 4-substituted pyridines; antiparallel correlations³⁸ of this kind for nitroalkanes, RNO2, and for alkyl isocyanides, RNC. Parallel correlations for meta-substituted benzamides, 509 using a Gaussian-80 set; and rather rough correlations for substituted pyridines.³⁹ There have been also some attempts at using π -electron densities from the rather old-fashioned Pariser-Parr-Pople SCF calculations, but the results seem to be contradictory, since for pyrrole moieties in pigments a parallel correlation was reported, 510 while in azines and azoles⁵¹¹ the pyridine-type nitrogen atoms showed a parallel correlation, but that for pyrrole-type nitrogens was antiparallel.

Alkyl group effects on nitrogen NMR shieldings play an important role (see ref. 5, p. 72), since they span a range of about 50 ppm in a given group of nitrogenous compounds. For molecules where internal rotations are not appreciably hindered, such shielding variations can usually be expressed in terms of the additive effects [10]. A good example of such additive effects is provided by a study of acrylamides⁵¹² (Table 12, note (k); the α - and β -effects found there amounted to +4.9 and -11.9 ppm, respectively). The long-

range effects, γ and δ , are usually small, and can easily be hidden under solvent and concentration effects. However, a systematic study of nitriles, R—CN, where R = Me, Et, Pr' or Bu', revealed a small but solvent-independent γ -effect of about +2 ppm.³³ More elaborate schemes are required in order to account for alkyl group effects in saturated azacyclic systems, such as those of tetraazadecalins [11]⁵¹³ in CDCl₃, H₂O and cyclohexane solutions, where the α , β and γ -effects were subdivided further, according to spatial relationships (in ppm, the first number refers to polar solvents, the other to cyclohexane as a solvent):

$$\alpha$$
(equatorial) = +1.3; +6.2 α (axial) = ?; +23.5 β (equatorial) = -15.3; -17.6 β (axial) = -7.0; -8.7 β (N_{eq}-C-N_{ax}) = +1.6; ? γ (anti, equatorial) = +1.2; 0.0 γ (gauche, axial) = +9.1; ca . 9 γ (N_{ax}-C-C-N_{ax}) = +2 to +8; ?

Recently, a new approach has been presented⁵¹⁴ for alkyl group effects on nitrogen shieldings, expressed by the equation:

$$\sigma_{N} = m \Sigma \sigma_{a}(i) + b$$

where σ_N is the nitrogen shielding concerned, m and b are parameters to be fitted, and $\sigma_a(i)$ are alkyl group parameters estimated by projecting the relevant C-C and C-H bond refractions (1.296 and 1.676, respectively) onto the C-N bond axis concerned. The latter parameters assume values:

Me + 1.678; Et + 0.126;
$$Pr'' + 0.644$$
; $Pr' - 1.426$; $Bu'' + 0.471$; $Bu' + 1.162$; $Bu'' - 0.908$; $Bu' - 2.978$.

This scheme gave good correlations with the nitrogen shieldings in a variety of alkylamines, alkylammonium ions, amides, isonitriles, imines, N-nitrosoamines, nitrile N-oxides, nitroalkanes and $R_2N = PX_2$ structures. 514

Various additive schemes have also been employed for explanations of nitrogen shielding changes within individual groups of related molecules and ions (ref. 5, p. 73); if they use only few parameters they usually reflect rather rough trends, and if there are numerous parameters the problem comes close to that of solving n equations in n unknowns, with no predictive value

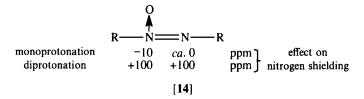
whatsoever. A recent example is concerned with $N(R^1)(R^2)(R^3)$ structures, where the substituents include chlorine atoms, nitro groups, etc., ⁵¹⁵ and the shieldings are expressed as sums of substituent effects; the overall correlation coefficient appears to be good, 0.992, but this seems to result from the large range of the shieldings concerned, since individual deviations reach 20 or even 50 ppm in some cases.

Quite a different approach has been proposed for nitrogen shielding assignments using such additive schemes, based on a set of *self-adjusting increments*, ⁵¹⁶ and tested for a large group of azine heteroaromatic rings. In the first step, we construct a set of additivity rules for nitrogen shieldings in molecules where the assignments to individual nitrogens are either obvious or are based on reliable assignment procedures. Then we check the system adopted, by least-squares fitting over all possible permutations of assignments, and obtain a set of structural increments to the nitrogen shieldings. Now, if we want to assign the shieldings in a new compound or compounds, we add the new data to the original database, and carry out the least-squares fitting over all permutations of assignments, including the new structures, in order to obtain the assignment required and also a new, improved set of the increments.

A special case of looking for linear correlations of nitrogen shieldings with some simple parameters which characterize chemical structures is that of substituent effects across aromatic rings [12] in terms of the Hammet equation or modifications of it. Generally, electron-donating substituents (-OR, -NR₂, etc.) increase the nitrogen shielding in such structures, while electron-attracting moieties R (such as NO2, CN) exert a deshielding effect. However, solvent effects on nitrogen shieldings are usually at least of the same order of magnitude, and various correlations reported in terms of Hammett substituent constants are usually just rough trends. In aniline itself, the range of para-substituent effects is appreciable, ca. 30 ppm, but for other arylamines this amounts to about 10 ppm (Table 7). In para-substituted benzonitriles (Table 16) and 4-substituted pyridines (Table 19), the range is about 15 ppm; in a variety of amido and thioamido moieties attached to phenyl rings (Table 12), the range is quite small, 5-7 ppm; it amounts to about 10 ppm in nitrobenzene derivatives (Table 26). In X₂P=N-Ph structures the effects are within 30 ppm, but they are negligible in $X_2P=N-SO_2Ph$ (Table 23).

$$R \longrightarrow N(X_2) \qquad R \longrightarrow N$$

Protonation effects on the nitrogen shieldings of the atoms involved are


variable, but they can attain values up to about 150 ppm. For alkylamines (Table 3), a typical effect is ca. - 10 ppm, but for ammonia it is about -50 ppm, and for hydroxylamine (Table 8) it is +20 ppm. The amino group in glyphosate⁵¹⁷ shows a typical protonation effect of about -10 ppm. The situation is more complicated for arylamines (Table 7); if the lone electron pair at the amino group is involved in a delocalized π -electron system, the protonation results in an increased (ca. + 10 ppm) shielding of the nitrogen nucleus, but when steric effects attenuate the conjugation, e.g. in N,N-dimethylaniline, the protonation effect is comparable to those observed in alkylamines, about -10 ppm. Such shielding changes belong to the low limit of protonation effects in nitrogen NMR, but they are quite useful in titration experiments. The upper limit is represented by protonation effects in systems such as [13] which include both open-chain structures and heteroaromatic

rings. In hydrazones, $R_2C=N-NR_2$ (Table 9) the effect on C=N is about +30 ppm, and about -10 ppm for NR_2 , but for imines (Table 24, including also complexation effects), it reaches +80 to +150 ppm; the same is true for azine heteroaromatic ring systems (Table 19, and Table 3, note (h)) and for pyridine-type nitrogen atoms in azole ring systems (Table 17). Attention is drawn to the protonation effects on the nitrogen shieldings in histidine imidazole moieties (Table 13, notes (b) and (c); also refs 518, 519), where pH effects on the His resonance in cytochrome c_2 was observed. One should notice that for pyrrole-type moieties in strongly acidic media, protonation takes place at carbon atoms, and the resulting shift of the nitrogen resonance concerned is in the deshielding direction, about -100 ppm (Table 17, notes (d) and (e)). The protonation of nitriles

$$R-C\equiv N \xrightarrow{H^+} R-C\equiv \stackrel{+}{N}-H$$

results in a large increase in the nitrogen shielding, by about +100 ppm (Table 16); this is also true for complexation at nitrogen (Table 16, note (w)).

Such large shielding effects on nitrogen upon its protonation are a typical tool for tracking nitrogenous protonation sites in a variety of chemical and biochemical structures. This has been done for deazapurine systems (Table 18, note (i)) where 3-deaza and 1-deaza derivatives show preferential protonation at N-1 and N-3, respectively. Similar studies included nucleosides and related structures (Table 22): purine pseudonucleosides (notes (c), (d), (h), (r), (w), (x)), protonation at either N-7 or N-9, depending on whether one of these is substituted with a pseudosugar moiety; adenosine (notes (c), (d)),

preferential protonation at N-1, sometimes at N-7; guanosine (notes (i), (l), (t), see also ref. 520), protonation at N-7, but at N-1 for the betaine structure of N-7-Me-guanosine (notes (h), (i)); xanthosine (note (n)), only weak effects at N-7; cytidine (notes (c), (r), (t)), protonation at N-3; pyrimidone derivatives (note (c)), weak effects at N-3; and wyosine (ref. 521, see also Table 22, notes (g), (v)). Recent ab initio quantum-mechanical calculations by the IGLO method¹¹ are in accord with the experimental data, predicting large shielding increments in pyridine-type nitrogen atoms of adenine (predicting also the preferential protonation site at N-1), guanosine, cytosine, thymine and uracil. Trimethoprim (Table 19, notes (v) and (w), see also refs. 94, 522, 523), was shown to undergo protonation at N-1 (or complexation with dihydrofolate reductase), with an effect of about +80 ppm for the nitrogen shielding concerned. A large number of flavin systems (Table 21, notes (a), (g), see also refs. 524-528) have been investigated by nitrogen NMR; the reduced forms show preferential protonation at N-1 (an effect of about +40 ppm), while the oxidized forms are protonated mostly at N-3 (ca. + 55 ppm shielding effect). Imidazo [1, 2-a]pyrazine was shown to undergo protonation at N-1, by means of 15 N NMR titration; 529 analogous studies on 2-methoxypyrazine⁵³⁰ indicate N-4 as the protonation site.

Indirect protonation effects, those exerted on nitrogen atoms by protonation at some other atom, are revealed in the nitrogen shieldings of a variety of structures: the nitro group, about +30 ppm upon the protonation of its two oxygen atoms (Table 26, note (g)); the O-protonation of diazoates (Table 27, note (j)); the protonation equilibria in solutions containing HNO₃ or HNO₂ (Tables 26 and 29, respectively); and azoxy compounds (Table 28) in FSO₃H [14], where the monoprotonation takes place at the oxygen atom.

5.4. Solvent effects on nitrogen shielding

Solvent effects can be quite remarkable (ref. 531 and ref. 5, pp. 81–85), and are often underestimated in various interpretations of nitrogen shieldings in terms of molecular structure. The largest influence of this kind, as far as neutral molecular species are concerned, has recently been found in a study of azine heteroaromatics;⁵³² pyridazine (1,2-diazine) shows a range of about 50 ppm for its solvent-dependent nitrogen shielding (see Table 19, note (b)).

In ionic species, the largest variation was observed for the nitroso moiety of $[C(NO)(CN)_2]^-K^+$ in water and a number of alcohols (Table 29, note (m)), amounting to about 200 ppm and related to the corresponding pK_α values for the solvents. In contrast, dinitrogen, indolizine, and azo compounds show very narrow ranges (1–2 ppm) of solvents effects on their respective nitrogen shieldings.

Some examples of typical solvent effects on nitrogen shieldings are quoted below from systematic studies on dilute solutions, where bulk susceptibility effects have been accounted for, and the solvents concerned encompassed a broad range of solvent properties.

Molecule	Range of solvent effects on nitrogen shielding (ppm)	Reference to table (note)
Pyridine	38	19(b)
Pyridazine (1,2-diazine)	49	19(b)
Pyrimidine (1,3-diazine)	18	19(b)
Pyrazine (1,4-diazine)	16	19(b)
1,3,5-Triazine	11	19(b)
Pyridine N-oxide	30	19(d)
Indolizine		
and azaindolizine systems		
bridgehead nitrogen	1–3	18(a)
pyridine-type nitrogen	26-32	18(a)
Alkyl cyanides (nitriles)	22–26	16(a)
Nitromethane	11	26(a,b)
Methyl nitrate	5	26(d)
t-Butyl nitrite	26	29(d)
Methyl isothiocyanate	10	15(a)
Azo bridge	2	28(b)
Dinitrogen	1.3	31(b,c,d)

These values exclude effects of protonation equilibria which may be found in more acidic solvents. The latter effects are usually much larger, and they were considered in the preceding section. Most of the data quoted above have been analysed in terms of the Kamlet-Taft system of solvent properties (discussed in ref. 5, pp. 83–84, and references therein), which can be presented here in the form:

$$\sigma_{N}(i, j) = \sigma_{N}(i, \text{ cyclohexane}) + a_{i}\alpha_{j} + b_{i}\beta_{j} + s_{i}(\pi_{j}^{*} + d_{i}\delta_{j})$$

where i denotes a given nitrogen atom in molecule examined, j denotes solvent, σ_N is the relevant nitrogen shielding, α_j is the hydrogen-bond donor

strength of solvent j (as a bulk property with respect to a solute, expressed in arbitrary units of the scale, 0 to about 1.5 for most solvents), β_j is the corresponding H-bond acceptor strength (0 to about 1 on the scale), π_j^* is the corresponding solvent polarity/polarizability term (0 to about 1), and δ_j is a correction for "superpolarizability" of aromatic and highly chlorinated solvents. The a, b, s, and d terms are the relevant nitrogen shielding responses to the individual bulk solvent properties on that scale.

Usually, the highest responses to hydrogen bonding from solvent to nitrogen show molecules which reveal high upfield shifts upon the direct protonation of the nitrogen concerned (see the preceding section); the direction of such H-bonding effects is the same as those of protonation, and the relevant terms exhibit values from about +21 (ppm per unit scale of α) for pyridine and pyridazine, 532 also for a covalent nitrito group, 31 to about +17for pyridine-type nitrogen atoms in the five-membered ring moieties of azaindolizines, 533 and to about + 10 for covalent cyanides. 33 However, there is evidently no correlation with the magnitudes of the relevant protonation shifts, and in the case of azine ring systems the term a drops from +21 for pyridine and pyridazine to about +8 in pyrimidine and pyrazine, and to +3in 1,3,5-triazine. There are reasons to believe⁵³² that the magnitudes of the a terms reflect relative strengths of the hydrogen bonds concerned, since there are reasonable correlations with the corresponding H-bond association constants, measured by other methods at very low concentrations with respect to a standard H-bond donor, and with ab initio calculated gas-phase protonation energies.

Nitrogen shielding responses to changes in solvent polarity are usually represented by the s term, since the d term is often rather negligible. The values of s (in ppm per unit scale of π^*) can be of either sign (the plus sign indicates an increased shielding with the increasing polarity of the medium). For pyridine-type nitrogen atoms in azines⁵³² and azaindolizines, ⁵³³ its value is about +5, with the exception of pyridazine for which it is unusually high, + 13 ppm. This is in accord with solvaton-type MO calculations of nitrogen shieldings (the method itself has been described in ref. 534), which also correctly predict the sign of the effect in other groups of molecules: 31-34,81,88 positive in covalent cyanides, negative (-4 to -10 ppm) in C-nitro and O-nitro groups, covalent nitrites and isothiocyanates. The data and the calculations seem to suggest that the sign of the effect should be related to the sense of bond dipoles in the vicinity of the nitrogen atoms concerned. In azaindolizines⁵³³ (see Table 18, note (a)), the s term is rather large and positive for pyridine-type nitrogens (N-1, N-2 or N-3), while it is small and negative for bridgehead nitrogens (N-4), so that the difference between the latter and the former nitrogen shieldings tends to decrease with increasing solvent polarity. This is in accord with correlations for different molecules in the same solvent⁹⁰ which show that this is an effect of enhancing the delocalization of the lone electron pair from N-4 over the ring system with increasing medium polarity.

Solvent, concentration and gegenion effects on the nitrogen shieldings of various reference substances are presented in Table 2. The shielding in tetrabutylammonium bromide was found to be almost independent of concentration. 535 Some solvent effects on arylamine nitrogen shieldings are shown in Table 7, notes (a, b, c, d, e); they seem to reveal deshielding with increasing solvent polarity. In amido moieties (Table 12, notes (a, g, m); Table 13, note (E); also ref. 536) there seems to be a deshielding effect on the nitrogen upon hydrogen bonding of the C=O groups by the solvent (-5 to)- 8 ppm). Dimethylformamide-water mixtures show a non-linear plot of the nitrogen shielding against the mole percentage of the amide, 537 but there does not seem to be any discontinuity claimed by the authors, who postulated the formation of a complex between DMF and H₂O. There are some additional data for the covalent isothiocvanate (and also thiocvanate) groups, but they do not include hydrocarbon solvents. Only polar and protic solvents are included in the data for azole ring systems presented in Table 17, notes (x, z, H. J. M. R). Attention is drawn to the study of hydrogen bonding effects in the imidazole moiety of His-57 in the catalytic triad of α -lytic protease (Table 13, note (b)). For azine aromatic systems, there are some additional, fragmentary data on pyridazine and 1,10-phenanthroline,538 and a study of 3.5-dimethylpyridine in 30 solvents, but for fairly high concentrations of the solute (Table 19, note (h)). A rough correlation of solvent effects on azine nitrogen shieldings (in substituted pyridines) with the calculated first ionization potentials has been reported.³⁹ The preferential sites of hydrogen bonding of 9-methylpurine by 3,5-dichlorophenol seem to be N-1 and N-7, while it is N-3 for 6,6,9-trimethyladenine, ⁵³⁹ according to the corresponding effects on the nitrogen shieldings concerned (see also Table 22, note (y)). Hydrogen bonding effects have been also monitored by means of nitrogen shieldings in some nucleosides, AMP-5' (ref. 540) and UMP-5' (ref. 541), and in amidine systems (Table 10, note (v)).

There seems to be only a small influence of solvents on the nitrogen shieldings in *trans*-azo bridges (Table 28, notes (a, b)), with the exception of CF_3CH_2OH as a solvent, which is likely to interact with the π -electron system of the N=N bond.³¹ Solvent-induced effects on the nitrogen shielding in the nitroso group seem to be quite diversified. For Bu'—NO, the range is about 10 ppm, and the major source of this variation seems to be solvent polarity, with little or no effects of solvent-to-solute hydrogen bonding, possibly owing to the steric hindrance from part of the bulky alkyl group (Table 29, note (a)). The O-nitroso group in a covalent nitrite (Table 29, note (d)) shows a larger range of such effects, about 26 ppm, with a large contribu-

tion of solvent-to-solute hydrogen bonding effects.³¹ Finally, the nitroso moiety of K⁺[(ON)C(CN)₂]⁻ in water and in a number of alcohols reveals a huge range of solvent-induced effects, of about 200 ppm, on the nitrogen shielding (Table 29, notes (m, n)), where hydrogen-bonding effects must play a dominant role.

5.5. Tautomeric equilibria and nitrogen shielding

Typical applications of nitrogen NMR shieldings to estimating tautomeric contents of various substances rely on large differences between the shieldings for the tautomers concerned; a good example is provided by the system [15] and its vinylogues, including also aromatic rings. Generally, for a system

if one observes only a dynamically averaged shielding

$$\sigma_{\rm av} = X_{\rm A}\sigma_{\rm A} + X_{\rm B}\sigma_{\rm B}$$

where X are the corresponding mole fractions, then

$$X_{\rm A} = \frac{\sigma_{\rm av} - \sigma_{\rm B}}{\sigma_{\rm A} - \sigma_{\rm B}}$$

provided that we know the shieldings for the tautomers concerned. Usually, we have to resort to approximating the latter, e.g. by using the corresponding methyl derivatives, X—Me and N—Me, and this leads to errors, $\Delta \sigma_A$ and $\Delta \sigma_B$, respectively. The error in the estimated value of X_A is then, approximately,

$$\Delta X_{\rm A} = \frac{\Delta \sigma_{\rm m} [X_{\rm A}^2 + (1 - X_{\rm A})^2]^{1/2}}{|\sigma_{\rm A} - \sigma_{\rm B}|}$$

where $\Delta \sigma_m$ is the average error involved in using reference shieldings taken from model compounds rather than those from the actual tautomers. As far as nitrogen shieldings are concerned, the denominator is usually large enough to keep errors at about $10 \, \text{mol} \%$ in the equilibrium composition.

Recently, a method has been described⁵⁴² which improves the precision significantly. It represents a *combined approach*, which does not take account solely of the nitrogen atom that exhibits the largest value of $|\sigma_A - \sigma_B|$ but also includes other nitrogen atoms in a molecule, and other atoms as well, e.g.

carbon and hydrogen. The latter, taken alone, are usually characterized by $|\sigma_A - \sigma_B|$ values which are too small to provide a sound basis for estimating tautomeric contents. The method is iterative, and it relies on statistical weights. First, we assume some values for the errors $\Delta\sigma_m$ for each kind of the nuclei involved (nitrogen, carbon, hydrogen, etc.), and calculate, from the NMR data for each of the nuclei involved, individual values of X_A and associated errors, ΔX_A . The latter are then used as statistical weights in calculating the weighted average of X_A , and this allows us to compute new, improved values of the errors $\Delta\sigma_m$. The procedure is continued until convergence is attained. The method was applied to a large set of tautomeric aza-aromatic systems, yielding tautomeric contents with an average precision of 3 mol%; it also yielded estimates of $\Delta\sigma_m$ for nitrogen, carbon and hydrogen nulei of 4.0, 1.3 and 0.08 ppm, respectively.

There are numerous examples in the tables where nitrogen shieldings have been employed either in the identification of prevailing tautomeric forms or in estimating tautomeric equilibrium compositions. Many of these come from the field of heteroaromatic ring systems: pyrrole moieties (Table 17, notes (i, j, q, r), and for bilirubin systems, notes (l, m, n, o)). Attention is drawn to solid-state investigations of tautomerism via internal proton transfers by dynamic nitrogen NMR^{151, 430-433, 435-437, 543-546} in porphins and related systems (see also Section 4.6); in pyrazoles (Table 17, notes (a, k, v, w, y, z, A); and in imidazole systems (Table 17, notes (a, B, C, F, H, I, J, K), including also imidazole moieties in histidine units⁵¹⁸ where slow, intermediate, and fast tautomeric exchange rates were found, depending on whether the His unit was deeply inside or close to the surface of a large protein, such as that of cytochrome c_2 ; see also Table 13, note (b), for studies of the His-57 imidazole units in a α-lytic protease. Further examples from Table 17 include triazole systems (notes (M, N, P, R, Q, T, S), tetrazole rings (notes (a, X)), oxazoles (note (F)), furoxans (note (ee)), thiazoles (note (F)), thiadiazoles (notes (R), (cc)), and phosphazoles (note (hh)). Studies on tautomeric azolo-azine systems are presented in Table 18, notes (g, h, i, m, n); those on azine heteroaromatics, in Table 19, notes (m, n, I, N), in Table 20, notes (a, b), and for flavin systems in Table 21, note (g). Nitrogen NMR applications in the field of tautomerism of nucleosides have been presented in ref. 547, and in Table 22, note (h).

Azo-hydrazone tautomerism significantly affects the relevant nitrogen shieldings, which constitute a valuable tool in its investigations (Table 9, notes (d, e, g, h, j-n), Table 28, note (f); see also ref. 548). The same applies to guanidine and amidine systems (Table 10, notes (w, u); see also ref. 549); azirine rings (ref. 118; see also Table 4) on p. 105; enaminone systems (Table 4, notes (d, i, j); see also refs. 193, 550-553); nitro-nitrito rearrangements

(Table 29, note (f), and Table 26, note (p)); P-N bond migration (Table 3, note (o)); and oxime-nitroso tautomerism (Table 24, note (w)).

6. SOME NOTES ON NITROGEN NMR IN INDIVIDUAL GROUPS OF MOLECULES AND IONS

6.1. Ammonia, ammonium ions, amino groups and related structures

The relevant data are presented in Table 3 (ammonia, alkylamines and corresponding ions); Table 4 (enamines and enaminones); Table 5 (amino groups coordinated to boron and silicon); Table 6 (amino moieties bound to elements other than carbon); Table 7 (arylamines and arylammonium ions); Table 32 (amino-type complexes); Table 13 (amino acids and related structures); and Table 8 (hydroxylamines, hydrazines, hydrazides).

There have also been some additional studies within this group of molecules. Solutions of sodium and potassium in liquid ammonia,⁵⁵⁴ where a quartet is observed in ¹⁴N NMR, reveal two types of unpaired electrons, as indicated by ¹⁴N relaxation and Knight shifts. The uptake of the ammonium ion has been examined by ¹⁴N NMR in the alga *Ulva lactuca*,⁴⁷⁸ in root tissues of barley maize,⁹³ and in perfused rat salivary glands;⁴⁷² and uptake of ammonia in acute hyperammonaemia induced in rats.^{555,556} Metabolites of hydrazine were identified in rat urine, by ¹⁵N NMR.⁵⁵⁷

Complexation equilibria have been followed by means of ¹⁵N NMR for the ammonium ion with 18-crown-6;⁵⁵⁸ for amino groups with calcium,⁴⁶¹ cerium(IV)⁵⁵⁹ and zinc(II)⁵⁶⁰ cations; and for the tetramethylammonium ion, using ¹⁴N-¹H couplings.⁵⁶¹ A phase diagram for NH₄Cl/NaCl/H₂O was deduced from ¹⁴N measurements.⁵⁶² Some correlation was found between amino nitrogen shieldings and the corresponding NH stretching frequencies in IR spectra.⁵⁶³

There have been some additional data for aminoglycoside antibiotics;⁵⁶⁴ for choline groups;^{462,463,565,566} for alkylammonium salts as mobile phases in liquid chromatography;⁵⁶⁷ for alkylammonium moieties (¹⁵N relaxation) in ampholytic ionomers;⁵⁶⁸ and for piperidine derivatives,⁵⁶⁹ trimethylsilyl derivatives of enamines,⁵⁷⁰ teriary amino groups bound to silicon and sulphur,¹⁴³ the enamino group in 4-amino-4-deoxychorismate,⁵⁷¹ NMe₂ groups in 1,8-di(dimethylamino)-naphthalenes (proton sponges, in solution and the solid state),⁵⁷² and enamino groups of polyethyleneimine polymers.⁵⁷³ Solid-state studies also included phase transitions in ammonium nitrate (¹⁵N CPMAS)⁵⁷⁴ and ¹⁴N NQR couplings in ammonium perchlorate²⁹⁶ as well as additional studies on the adsorption of tetraalkylammonium ions on zeolites.⁵⁷⁵ Relaxation measurements for ¹⁵N in

MeCH(NH₂)CH₂CH(NH₂)Me show⁵⁷⁶ that the internal rotation in the amino moieties is hindered while it is free in the corresponding ammonium ions. There are also additional data for amino-type complexes of platinum which show ¹⁵N-¹⁹⁵Pt couplings⁵⁷⁷ or are employed in following the reactions of such complexes with reduced glutathione in human red blood cells.^{578,579}

Some older data on the nitrogen shieldings in substituted anilines show rough correlations with Hammett's substituent constants, 580 but the data refer to rather concentrated solutions. The shieldings of amino groups in aminopyridine derivatives seem to show correlations with *ab initio* calculated (STO-3G) charge densities at the nitrogen atoms concerned. 508 The NH₂ resonance in perfluoroaniline shows an increased shielding, by about 30 ppm, with respect to aniline. 581 Two 15 N resonances observed for the 2-NH₂ group in actinomycin D indicate the presence of two conformations in solution. 181

There are additional data on lithium salts of aniline derivatives (see Table 6, notes (A, B) which show, via ¹⁵N-⁶Li coupling of about 3.5 Hz, that dimeric and trimeric structures are present in solution and each of the nitrogen atoms is bound to two lithium atoms.²⁷⁶

Solid-state studies on tautomerism involving enamino moieties have been carried out by means of ¹⁵NCPMAS dynamic spectra of labelled compounds. ^{428,429,432,433,436,437} The NH enamino moiety in the indium salt of a dithiocarboxylic acid⁵⁸² shows a doublet in ¹⁴N NMR which excludes any complexation to the cation. In addition to the data presented in Table 4, there is a further example of identification of enaminone-type tautomers. ⁵⁸³ It is interesting to note the low value of ¹J(¹⁵NH) coupling, 64.7 Hz, in the R—O—NH—O—R system. ⁵⁸⁴

Hydrazido complexes (Table 8), MNNR₂, show large differences in the nitrogen shieldings between the MN and NR₂ moieties. This is even more pronounced in the low-valent tungsten complex $(CO)_5W=NNMe_2$, where values of -420 ppm (W=N) and $+79 \text{ ppm } (NMe_2)$ were reported;⁵⁸⁵ the latter are also significantly different from those in the table.

6.2. Hydrazones

There is a large difference in the nitrogen shieldings between the imino- and enamino-type moieties in hydrazones and related structures (Table 9). Hydrazone-azo tautomerism in a variety of structures, including those of azo dyes, has been examined on a large scale (see Tables 9 and 28, see also refs 412, 548, 586, 587), using nitrogen shieldings or deuterium isotope effects on the latter. 498 Hydrazone moieties in some semicarbazone derivatives are presented in Table 10, note (h). There have also been some additional data

on the shieldings in dithiocarbamate derivatives, $MeSC(=S)NH-N=CR_2$, which show differentiation between E and Z isomers. 588

6.3. Amido moieties

Amido moieties are found in a number of important nitrogenous structures and these include ureas, thioureas, guanidines, amidines, amidoximes, and their derivatives (Table 10); cyanamides (Table 11); and amides, thioamides, sulphonamides (Table 12). Amide (peptide) linkages in peptides and proteins are included in Table 13 and are considered in the next section. Amide-type moieties are also found in a number of tautomeric derivatives of azole (Table 17), azoloazine (Table 18) and azine (Tables 19 and 20) ring systems, also including flavin derivatives (Table 21) and nitrogenous bases in nucleosides and nucleotides (Table 22).

There have also been additional studies using nitrogen NMR on the identification of urea-type moieties in resins⁵⁸⁹ and alkyl derivatives of thiourea;⁵⁹⁰ of urea (by ¹⁴NNMR) in urine of patients with chronic renal failure;⁵⁹¹ of N,N-diethylcarbamates⁵⁹² in complexes with Zn²⁺, Cd²⁺, and Hg²⁺; of amidine moieties,^{118, 549} also in solid HCN-polymers;⁴⁴⁶ of N-arylguanidines;⁵⁹³ and of guanidine moieties in arginine units of TaqI endonuclease.²¹⁷ Creatinine derivatives contain guanidine-type fragments, and the relevant data are shown in Table 17, note (G). Rather feeble effects (within 6 ppm) of para- and meta-substitution have been found in the nitrogen shieldings of Ph—CO—NH—CS—NHR derivatives.⁵⁹⁴ A comparison of amide nitrogen shieldings, referenced to those in the corresponding amines, with the N-H stretching frequencies in infrared spectra did not reveal any correlation.⁵⁹⁵ The racemization of allantoin was studied by ¹⁵N NMR in DMSO solutions and in the solid state.³⁸³

The nitrogen shieldings in acrylamide derivatives⁵¹² seem to be sensitive to π-electron conjugation within the amido moiety, but not to that including the vinyl group. Amido groups have been detected, by ¹⁵N CPMAS NMR, in plasma-polymerized acetonitrile, ⁵⁹⁶ in HCN polymers, ^{446,452,453} in nylon-type polymers; ^{359–362,368–371,373–375,597} in alkene-N-maleic imide and 2,3-diethylsuccinimide polymers; ⁵⁹⁸ and also by ¹⁴N NMR in poly(vinylpyrrolidone). ⁵⁹⁹ There have also been some additional data on cyclic amido moieties ⁶⁰⁰ and those bound directly to selenium. ⁶⁰¹ Cyclic thioamides bound to furanoid carbohydrate rings seem to exhibit a downfield shift, by ca. 5 ppm, in nitrogen NMR with respect to those bound to pyranoid rings. ⁶⁰²

A plot of the nitrogen shieldings in aqueous HCONMe₂ vs the mol% of the amide is non-linear and suggests the formation of hydrates.⁵³⁷ Strong

association with hydroxylic solvents has been indicated by ¹⁴N shielding and relaxation measurements of pyridone and its *N*-methyl derivative. ⁵³⁶

The hydroxy-imino structures of iso-amides [16] which are isomeric (or tautomeric) with respect to amides, show typical imino nitrogen shieldings (Table 12, see also Table 24), about 150 ppm downfield of those of amides. This structure was detected by 15 N NMR in a silylated hydroxamic acid derivative, MeC(OSiMe₃)=N-OSiMe₃ (+73 and +88 ppm, E and Z isomers, respectively).⁶⁰³

While the nitrogen shieldings of sulphonamides and sulphinamides do not depart significantly from the range characteristic of amido groups, sulphenamide structures seem to fall within the range of amino group nitrogen shieldings (Table 12). There have been also some additional data⁶⁰⁴ for the rather weak effects of substituents in benzenesulphonamide derivatives (see Table 12). The complexing of p-fluorobenzenesulphonamide with human carbonic anhydrase has been indicated by an increase in the nitrogen shielding of the former by about 10 ppm.⁶⁰⁵

6.4. Amino acids, peptides, proteins and related structures

The importance of these nitrogenous structures in nature makes nitrogen NMR a powerful tool in biochemical, biological, and medical studies. Actually, recent developments in nitrogen NMR techniques (see Section 4) have been oriented towards investigations of fairly large protein units. As far as chemical structures are concerned, and the relevant nitrogen shielding ranges, this group includes amino/ammonium moieties (amino acids, terminal and sidechain groups in peptides and proteins), amido groups (peptide linkages and sidechain amides), and also sidechain groups like guanidino/guanidinium or imidazole moieties which are present in some amino acid units.

The nitrogen shieldings of amino acids as such have been presented in detail in ref. 5, pp. 365-369; some additional results are shown in Table 13, and those for amino acids as ligands in amino-type complexes in Table 32. There have also been other studies by 15 N NMR of labelled samples, which include: taurine; 606 β -aminoglutaric acid as a major soluble component of *Methanococcus thermolithotropicus*; 607 N-(3,5-dinitrobenzoyl)valine methyl ester (D-, L-, and racemate) in diastereomeric complexes with N-butylamide of S-2-(phenylcarbamoyl)oxypropionic acid; 608 zinc-cysteine complex forma-

tion, 560,609 with the observation of 67Zn-15N coupling; and calcium-amino acid complexes, 610 where no significant effects on the shieldings were found. Numerous studies, by 15 N NMR of labelled amino acids, have been carried out in order to follow their incorporation and metabolism in a variety of biological systems: alanine, 611,612 including a discussion of competitive methods, based on radioactive 13N; lysine in cell walls of Aerococcus viridans, 451 including effects of penicillin on cell-wall metabolism; 394 lysine in bovine rhodopsin and the purple membrane of Halobacterium halobium; 409 lysine and methionine,⁶¹³ and glycine⁶¹⁴ in collagen fibres; allantoin⁴⁵⁰ and methionine⁴⁴⁹ in soya bean cotyledons; glycine in melanoidins^{404,405} in various rat organs, 474,475 in rat liver, 615 also by in vivo(!) experiments, 426 in Nicotiana tabacum mesophyll protoplasts, 616 and in peat incubated for 6 months under various conditions; 402 glutamate in fermentation processes effected by Brevibacterium lactofermentum, 617 and in the formation of a novel tetrahydropyrimidine derivative by the in vivo and in vitro syntheses effected by Streptomyces parvulus; 618,619 histidine in the insect cuticles of tobacco hornworm; 400,401 and microbial syntheses of tyrosine and tyramine. 620 The 14 N resonance signal of glycine betaine, Me₃N⁺—CH₂COO⁻, is sharp enough to be detected at low concentrations of the compound, and the relevant relaxation measurements can be used as a probe for local viscosities in cytoplasma, as was shown with the example of Escherichia coli K12, where the bacteria were grown in the presence of the betaine. 621

However, most concern from the point of view of nitrogen NMR has been involved in the field of peptides and proteins. The nitrogen shieldings of N-acetyl derivatives of amino acids may serve here as a sort of reference (Table 13, note (h)), but the shieldings in peptide and protein systems can significantly deviate from such reference values, owing to a variety of intraand intermolecular effects. Usually, as far as peptide linkages are concerned, the highest shieldings are observed for glycine (Gly, G) units, and the lowest for those of proline (Pro, P); the shieldings span a range of about 40 ppm, from +280 to +240 ppm with respect to neat nitromethane. They can easily be distinguished from those of terminal or sidechain amino/ammonium moieties, whose nitrogen resonances are found at higher fields, and from the imino-type moieties in arginine guanidino groups and histidine imidazole rings, which show nitrogen resonance signals at lower fields.

Recent developments in nitrogen NMR (see Section 4), particularly those which combine it with ¹H and ¹³C NMR in a variety of two- and three-dimensional techniques, have brought complete or nearly complete assignments of nitrogen shieldings (and of those of the other nuclei), including internuclear connectivities, for a number of fairly large peptide and protein systems. Uniform or selective labelling with ¹⁵N is usually a prerequisite for such detailed studies, and ¹³C-¹⁵N labels, in combination with various polariza-

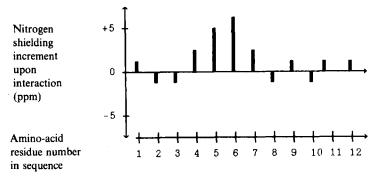


Fig. 3.

tion transfer and relay experiments, allow one to follow the fate of individual carbon-nitrogen bonds in biological systems by using ¹⁵N NMR. Numerous examples can be found in Table 13. Recently, there have also been additional examples of full or nearly full assignments of nitrogen shieldings, based on combinations of various 2-D, 3-D and even 4-D techniques (see Section 4.1), in protein and peptide systems: Escherichia coli ribonuclease H, 260 oxidized and reduced forms of thioredoxin, 622 and apocytochrome b_{562} ; 623 ribonuclease T1;624 Lactobacillus casei dihydrofolate reductase;625 calmodulin;245,256 oxidized flavodoxin from Anacystis nidulans; 265 interleukin-18; 266 phosphotransferase protein III^{Glc}; ²³⁹ Bacillus subtilis enzyme III^{Glc}; ⁶²⁶ and λ -cro repressor protein. 240 Since such methods allow one to trace individual amino acid units, they constitute a potentially powerful tool for the observation of various interactions that involve in specific parts or sites of a protein molecule. However, the range of nitrogen shieldings (as well as proton and carbon shieldings) for peptide linkages is rather small; such full assignments have to be done separately for a given protein under conditions where the interaction does or does not occur. Results are conveniently presented in the form of difference shieldings (Fig. 3) which should show the protein fragments involved in the interaction. This method failed to reveal any specific sites for calmodulin (ligated to Ca²⁺) upon its interaction with the binding domain of rabbit skeletal muscle myosin light-chain kinase.²⁵⁶ However, Escherichia coli thioredoxin⁶²² shows characteristic sites. ^{26-37,60,75} and ⁹² which are affected by the transformation between its reduced and oxidized forms. The binding of Mg²⁺, Ca²⁺ and Ba²⁺ to Escherichia coli ribonuclease HI, monitored by this method,²⁴¹ revealed involvement of the vicinity of residues. 10,48,70,122-126 and 134

There have been less complete or specifically oriented studies by nitrogen NMR of a variety of peptides and proteins: bovine pancreatic trypsin inhibitor (BPTI); 191,196,237 staphylococcal nuclease from *Escherichia coli*; 214,216,230,258,277,388

 λ -cro repressor, labelled Leu and Lys units in interaction with operator DNA fragment; porcine pancreatic phospholipase A_2 ; arginine guanidino moieties in TaqI endonuclease; human carbonic anhydrase II; CMP-KDO synthetase; calmodulin; human carbonic anhydrase II; CMP-KDO synthetase; calmodulin; human carbonic anhydrase II; cMP-KDO synthetase; calmodulin; human carbonic anhydrase II; human carbonic anhydrase II; cMP-KDO synthetase; calmodulin; cytochromes c_2 and c'; cytochromes c_2 and c'; cytochromes cytochromes; human carbonic anhydrase II; complex with alanine racemase; fill amentous bacteriophage Pf1 coat protein in micelles; cytochromes protein in oriented bilayers; human protein ner from phage Mu; cytochromes planetic in an oriented bilayers, cytochromes protein ner from phage Mu; cytochromes planetic in an oriented bilayers, cytochromes cytochromes planetic in an oriented bilayers, cytochromes planetic in a

Extensive ¹⁵N NMR studies have been carried out on nitrogen assimilation from ¹⁵NH₄⁺ (or labelled ammonia) into peptide units of various biological systems: the fungus *Cenococcum graniforme*;⁶³³ beech root cells symbiotically associated with soil fungi;⁶³⁴ marine alga *Prochloron* species, light-dependent assimilation;⁶³⁵ *Streptomyces venezuelae*;⁴⁷³ *Streptomyces parvulus* and *Saccharomyces cerevisiae*;⁶³⁶ *Bacillus polymyxa*;⁴⁸⁰ *Bacillus azotofixans*;⁶³⁷ *Methanobacterium thermoautotropicum*,³³⁴ also the uptake of labelled urea;⁶³⁸ ammoniated straw;⁴⁰³ metabolism in rat organs,⁶³⁹ also in acute hyperammonaemia;^{555,556} and metabolism in plants.⁶⁴⁰ The assimilation of both NH₄⁺ and NO₃⁻ has been studied in alfalfa (*Medicago sativa*)³⁹⁵ and in barley, maize, and pea roots (by ¹⁴N NMR);⁹³ and uptake of methylamine into N-methylglutamate in *Pseudomonas* species A.⁶⁴¹ Nitrogen fixation from ¹⁵N₂ was followed for *Klebisiella pneumoniae* (also from labelled ammonia);³⁹⁸ and for *Methanococcus thermolithotropicus*, *Methanobacterium bryantii* and *Methanospirillum hungatei*,³⁹⁶ also from the ammonium ions.⁴⁸¹

15 N NMR has also been employed in the differentiation of peptide and choline units in pig kidney tissue; 566 in in vivo studies on cell-wall organization in Streptomyces faecalis and Bacillus subtilis; 642 in studies on peptidoglycan mobility in Aerococcus viridans; 393 in biosynthetical labelling of echinomycin and triostin; 643 in conformer population estimates for collagen model peptides labelled with (15 NGly; 644 in a study of cis-trans isomerism at 15 N-Gly-Pro bonds, 270 using two-dimensional 15 N/15 N exchange spectra; and in the detection of the sulphenamide-type linkage which is formed upon the inactivation of cysteine proteinase cathepsin B with its inhibitor, 13 C-15 N labelled N-benzyloxycarbonyl-L-phenylalanylglycine O-mesitoylhydroxamate. 645 The nitrogen shieldings of the terminal Gly unit in a number of solid peptides 385 seem to increase with decreasing length of the hydrogen bond between NH and CO in the crystal lattice, but there is no correlation with nitrogen-oxygen distances.

There have also been presentations of various experimental techniques which included nitrogen NMR as such or in combination with proton and carbon NMR, using peptides and proteins as model molecules 165, 167, 168, 186, 188, 228, 243, 246, 247, 250-254, 290, 444, 646, 647 (see also Section 4 on Experimental Techniques).

6.5. Azido, isocyanato, cyanato, isothiocyanato, thiocyanato groups and corresponding ions

These structures can be represented by the formulae [17] and [18].

$R_{N=X=Y}$	X	Y	
• • • • • • • • • • • • • • • • • • • •	N ⁺	N-	covalent azide
[17]	C	O	covalent isocyanate
	C	S	covalent isothiocyanate
R			
`x-C≡N	O		covalent cyanate
[18]	S		covalent thiocyanate

The highest shielding of nitrogen nuclei within this group takes place in the R—N= moieties (Tables 14 and 15). The data for azides and the azide ion are presented in Table 14. The use of selectively ¹⁵N-labelled azido groups in combination with ¹⁵N NMR enables one to follow the fate of individual nitrogen atoms of the group in reactions and rearrangements; this method revealed the scrambling of the labels over the tetrazole ring in the anion of azido-substituted tetrazole (Table 14, note (c)), and also the location of the labels in the pentazole ring obtained from the azide ion as a substrate.⁶⁴⁸ The nitrogen shieldings and the lack of ¹⁵N-proton couplings were employed in localizing the position of the azido substituent, at C-1, in an iodo-azide adduct of 1-phenylcyclohexene.⁶⁴⁹ The ¹⁴N relaxation in sodium azide shows a rather poor correlation with the acceptor number of the solvent employed,⁶⁵⁰ and the same is true for sodium thiocyanate.

There is a clear distinction, as far as nitrogen NMR shieldings are concerned, within the isomeric pairs of structures of isocyanates and cyanates, and within the pairs of thiocyanates and isothiocyanates (Table 15). Such differences are also important in using nitrogen NMR as a source of information on the mode of binding of (iso)cyanate ions or (iso)thiocyanate ions as ligands in complexes (see Table 15). There have also been systematic studies of solvent effects on the nitrogen shieldings of the isothiocyanato group (Table 15, notes (a, b); see also Section 5.4). The monitoring of the (iso)thiocyanate ion, NCS⁻, by means of nitrogen NMR has also been employed in

the case of alkylammonium salts used as mobile phases in liquid chromatography; 567 in biuret-rich 4,4'-methylene-bis(phenylisothiocyanate)-based resins, 441 in following its binding to lactoperoxidase, 651 also by 15 N T_1 relaxation measurements, and its lactoperoxidase-catalysed oxidation with H_2O_2 , 652 in a study of its interactions with horseradish peroxidase, 653 also using 15 N relaxation; and in following its binding to germanium in reactions of $GeCl_4$ with KNCS. 654 , 655 Abnormally large $^{31}P_-^{15}$ N couplings were observed in phosphorus-bound isothiocyanato groups. 656

There is a large difference between the nitrogen shielding anisotropies of the ammonium ion (less than 10 ppm) and the (iso)thiocyanate ion (ca. 415 ppm) observed in solid NH₄NCS.³⁵¹

6.6. Cyanides, isocyanides, fulminates and related structures

The cyanide ion, also as a ligand, covalent cyanides (nitriles) and isocyanides (isonitriles), nitrile N-oxides (fulminates) and other cyano moieties are considered in Table 16, but there are also additional data in Tables 9, 11, 28, 29. The cyano ligands in vitamin B_{12} and related cyanocobalamin structures are included in Table 34.

There is a clear distinction in the nitrogen shieldings between the isomeric structures of nitriles and isonitriles (Table 16). The protonation of nitriles, which yields the corresponding nitrilium ions, results in a considerable increase in the nitrogen shielding, by about 100 ppm. Generally, any involvement of the lone-pair electrons of the nitrile nitrogen in the formation of a covalent or hydrogen bond yields analogous effects on the nitrogen shielding, and examples can be found in Table 16. Attention is drawn to systematic studies of solvent effects on the nitrogen shieldings in nitriles (Table 16, note (a)), which are considered in Section 5.4.

Fulminates (nitrile N-oxides) show a significant increase in the nitrogen shieldings with respect to the parent nitriles (Table 16, notes (p, q)), but the effect is smaller than in the case of the nitrilium ions (notes (l, m, n, o)). The latter also include interesting structures where the nitrile nitrogen is coordinated to xenon or krypton (Table 16, notes (m, n)), and their ¹⁵N spectra reveal spin-spin couplings to Xe or K. The mesoionic structures of nitrile-imides, which are isomeric to diazo compounds, are considered in Section 6.12.

The nitrogen shielding in the cyanide ion, CN⁻, is smaller, by about 30 ppm, than that observed in simple nitriles (Table 16, note (u)); it does not change significantly in diamagnetic complexes where the ion is coordinated via its carbon atom, but the shielding increases remarkably when the coordination takes place via its nitrogen atom (see, for example, Table 16, note

(w)). The latter effect on the shielding is analogous to that observed for nitrilium ions. Needless to say, in the case of paramagnetic complexes of CN^- , huge paramagnetic effects on the shielding are found (Table 16, notes (y, z, A, B)).

There have also been other studies where ¹⁵N NMR was employed for detecting cyano moieties: acetonitrile adsorbed on zeolites;⁴²⁵ cyano substituents in stable nitroxides,⁶⁵⁷ and geminal cyano substituents at cyclobutene ring structures;⁶⁵⁸ cyano groups in HCN polymers;⁴⁴⁶ cyano ligands in low-spin iron(III) porphyrins in aqueous detergent micelles;⁶⁵⁹ the fate of the cyano group in a papaine inhibitor, *N*-(*N*-acetyl-L-phenylalanyl)glycine nitrile,⁶⁶⁰ which is transformed into an amido moiety upon interaction with papaine.

i⁴N relaxation in acetonitrile was employed⁶⁶¹ as a probe for surface viscosity of various phases used in gas-liquid chromatography. A specially interesting case is that of ¹⁴N linewidth measurements for various nitriles which entered the solvation sphere of nickel(II) trifluoromethanesulphonate at various temperatures and under high pressures (up to 220 MPa) in a specially designed probe.⁶⁶²

Recent *ab initio* calculations for HCN, using the second-order polarization propagation approximation within the coupled Hartree-Fock method, yielded a value of $-17.0\,\mathrm{ppm}$ for the absolute magnetic shielding of nitrogen, ⁷² and this seems to indicate that nitrile nitrogen shieldings are located near to the zero point (that corresponding to a bare nitrogen nucleus) on the absolute scale.

6.7. Nitrogen-containing heteroaromatic systems

These systems include six-membered rings (azines, Table 19), five-membered rings (azoles, Table 17), and combinations thereof (azolo-azines, Table 18). Azine analogues with SO₂ moieties within the rings are presented in Table 20, phosphazoles in Table 23, and the heteroaromatic systems of significant biochemical and biological interest are included in Table 21 (flavins and related pterins), Table 22 (nucleosides, nucleotides, and related structures), and Table 34 (drugs, medicines, vitamins, etc.).

There are essentially two types of bond patterns involving the nitrogen atoms in such systems. One is represented by what we call *pyridine-type nitrogen atoms*; each of these bears a lone electron pair which may be considered as a part of the relevant σ -bond system and supplies one π -electron to the delocalized aromatic π -bonds. This type is found in azine ring systems, and also in diazole, triazole, tetrazole, pentazole, oxazole, thiazole, and analogous ring systems. Their nitrogen shieldings cover a fairly wide

range, about -40 to +180 ppm with respect to that in neat nitromethane; they do not depart significantly from those for open-chain imines (Table 24). The protonation (or N-alkylation) of a pyridine-type nitrogen atom invariably leads to a remarkable increase in the magnetic shielding of its nucleus, often by 100 ppm or more, and this makes nitrogen NMR an important tool in following protonation-deprotonation sites and equilibria (see Section 5.3). Nitrogen shieldings similar to those observed in protonated azines are also found (about + 180 ppm from nitromethane) in azine-type cationic species where the nitrogen atom lies at the junction of two six-membered rings (Table 19, note (H); some additional data on such structures can be found in ref. 663. Analogous, but somewhat smaller effects are observed upon the N-oxidation or hydrogen bonding of such nitrogen atoms (Table 19), and systematic studies of solvent effects on the nitrogen shieldings of azine systems^{31,34,532} (see also Table 19, notes (b, d, q), and Section 5.4) show that nitrogen NMR can be employed in the estimation of relative strengths of hydrogen bonds from solvent to pyridine-type nitrogens. The huge upfield shifts of pyridine-type nitrogen resonances that occur upon the protonation of the corresponding nitrogen atoms are also observed in cases where the proton comes formally from an -OH or -SH substituent in the molecule concerned, and the resulting structure is that of the corresponding lactam (or thiolactam) tautomer, or eventually of a mesoionic, betaine-like tautomer. This is especially important in investigations of tautomerism and tautomeric equilibria in nitrogenous heteroaromatics (see Section 5.5), using nitrogen NMR as such or in combination with the NMR of other nuclei.664

The other type of bonding of nitrogen atoms in heteroaromatic systems is represented by what we call pyrrole-type nitrogen atoms; each of these is bound covalently to three neighbouring atoms, and supplies two electrons to the delocalized π -bond system concerned. This type is found in azole systems, with the exception of oxazole, thiazole and analogous systems, where formally the pyrrole-type nitrogen atom is replaced with that of oxygen or sulphur. It is present, however, in phosphazole rings (Table 23), where phosphorus formally replaces nitrogen atoms of the pyridine type. Pyrroletype nitrogen atoms are also found in azolo-azine systems (Table 18), as those at the junctions of their fused five- and six-membered ring moieties (indolizine and their aza-derivatives). Rarely can one find such nitrogen atoms in azines; an example⁶⁶⁵ is presented in Table 19 note (H), where a nitrogen atom is at the junction of three six-membered ring moieties. Generally, pyrroletype nitrogen nuclei are magnetically more shielded that those in pyridinetype nitrogens, particularly if both kinds are present in a given molecule. This difference is usually quite remarkable, but it is not always the case. Recent studies on azaindolizine systems⁹⁰ (see also Table 18, notes (a, b, c, d, e) and Table 17, note (ii)) show that the difference diminishes with increasing degree

of delocalization of the lone-pair electrons from the pyrrole-type nitrogen atom involved in the aromatic ring system, and it can even change its sign. The same trend of the effects of the nitrogen shieldings in aza-indolizines is observed for solvent-induced enhancements of such a delocalization in systematic studies of solvent effects on the shieldings⁵³³ (see Table 18, note (a) and Section 5.4). The nitrogen shieldings of pyrrole-type nitrogen atoms are found in the range from +80 to +230 ppm with respect to neat nitromethane, while those of lactam-type tautomers of OH- and SH-substituted azoles and azines are usually higher, in excess of +200 ppm from nitromethane.

Nitrogen NMR shieldings can be used effectively in differentiation between various isomeric or tautomeric forms of heteroaromatic systems, and there are examples galore in the tables concerned. More or less pronounced additivity of various structural effects on the shieldings, such as that observed for azine systems, 516 can be employed for this purpose, e.g. by means of constructing the so-called self-consistent sets of increments to the shieldings, described in detail in Section 5.3. There have also been some attempts at explaining the nitrogen shieldings in this class of molecules using various quantum-mechanical calculations. Those at the ab initio level included the outright calculations of the shieldings for azole and azine systems, by the IGLO variant of the coupled Hartree-Fock method, which gave a reasonable agreement with the experimental values, but large deviations (up to 100 ppm) were found for systems with two neighbouring nitrogen atoms, possibly owing to the neglect of electron correlation. 10 In other computations at this level of sophistication, reasonable, but local correlations were found between the STO-3G calculated charge densities and the nitrogen shieldings in amino derivatives of azines and their N-oxides⁵⁰⁸ and in some mesoionic azole systems.666 The relative stability of the tautomeric forms presented in Table 20, indicated by nitrogen NMR, was also predicted by such calculations.⁶⁶⁷ Only rough correlations were found between the nitrogen shieldings of 4-substituted pyridines and the calculated ionization potentials.³⁹ Less sophisticated methods involved the CNDO calculations of the increased shielding upon the hydrogen bonding of the nitrogen atom in pyridine,³⁷ and rather rough correlations between PPP-calculated π -charge densities and the nitrogen shieldings in azines and azoles.⁵¹¹

There have also been other studies which are not presented in the tables. The scrambling of ¹⁵N labels was observed by nitrogen NMR in 5-azidotetrazole, ⁶⁶⁸ as a result of ring opening and closure processes. Four distinct ¹⁵N signals were observed ⁶⁶⁹ in the haeme part of ferrocytochrome $c^{.553}$ at pH 5.5: at + 195.1 (pyrrole I), + 192.1 (pyrrole II), + 200.3 (pyrrole III) and + 193.5 ppm (pyrrole IV). The adduct of the pyrazole anion with BH₃ shows nitrogen shieldings of + 140 and + 80 ppm ⁵⁸² which are typical of *N*-substituted pyrazoles (see Table 17). The synthesis of ¹⁵N-labelled 1,2,4-triazole

was followed by means of ¹⁵ N NMR.⁶⁷⁰ There have been also some additional data on the nitrogen shieldings in pyrrole-containing polymers, ^{381,382} substituted indoles, ⁵⁸⁰ benzodiazoles and benzotriazoles, ⁶⁷¹ nitro-substituted benzimidazolones, ⁶⁷² 1-chloro-1,2,4-triazole derivatives, ⁶⁷³ 1,2,3-thiadiazoles, ^{163,674} mesoionic azole derivatives, ^{675,676} imidazo [1,2-a]pyrazine ⁵²⁹ (which was shown to undergo protonation at N-1), and phosphazoles. ¹⁷⁶

The ¹⁴N linewidths of pyridine were employed in studies on the solvation sphere of Ni(II) and Co(II) complexes in pyridine solutions;⁶⁷⁷ analogous measurements were employed in a study of rotation dynamics of 2-pyridone in hydroxylic solvents;536 and of changes in liquid organization of quinoline. 678 The nitrogen shieldings of some complexes which include pyridine rings are also presented in Table 24, notes (f, g, h). The N-1 and N-4 atoms of the quinoxaline moiety of the antibiotic triostin A were shown⁶⁴³ to come from the indole and amino moieties, respectively, of tryptophan, using ¹⁵N NMR of labelled samples. Two conformations of [5-¹⁵N]folate were detected in a complex with dehydrofolate reductase.⁶⁷⁹ Copper was found to bind N-7 and N-9 in Cu(II) complexes of purine.¹⁰² Hyperfine couplings in the radical states of flavin systems were monitored by ¹⁴N ENDOR.⁶⁸⁰ There are also some additional data on the nitrogen shieldings in substituted pyridines and quinolines, 681 in trimethylsilyl-substituted quinolines and their N-methyl iodides, ⁶⁸² in Sn(IV) derivatives of 8-O- and 8-S-substituted quinolines, ⁶⁸³ and on the relevant protonation shifts in pyridazine and phenanthroline, ⁵³⁸ and in 2-methoxypyrazine (protonation at N-4). ⁵³⁰ Solid-state copper(I) complexes of 1,10-phenanthroline show a shielding increase by about +45 ppm with respect to the parent structure.³⁶⁵ Significant upfield shifts of the nitrogen resonance signals, by 12–82 ppm, were reported for —CH₂Ph-substituted pyridazines, pyrimidines, and pyrazines, upon the formation of the corresponding —CH——Ph anions; 684 the latter effect is in accord with the general trend in substituent effects on nitrogen shieldings in aromatic systems (see Section 5.3).

6.8. Nucleosides, nucleotides, flavins and related systems

This biologically important class of organic compounds represents, from the point of view of nitrogen NMR, azine and azolo-azine systems or tautomeric derivatives thereof, and the considerations of the nitrogen shieldings of the latter apply also to the present group. An important point here is that the nitrogen shieldings in such aromatic systems are generally lower than those of the peptide linkages in protein moieties, and they can be readily distinguished from each other in nitrogen NMR spectra of biological samples.

Flavins and related pterin systems are presented in Table 21. Attention is

drawn to the fact that there is a simple distinction between the oxidized and the reduced forms of flavins as far as the nitrogen shielding of N-5 is concerned (about + 50 ppm for oxidized, and about + 320 ppm for reduced forms); see also the data⁶⁸⁵ for oxidized and reduced forms of glucose oxidase from *Aspergillus niger*. Conformations of a complex of *Escherichia coli* dehydrofolate reductase with 5-¹⁵N-labelled folate or methotrexate were studied by ¹⁵N NMR.⁶⁸⁶

Nucleosides, nucleotides and related systems are included in Table 22. Nitrogen NMR is an important tool in tracing tautomeric forms of the latter, protonation sites and hydrogen bonding interactions, since the nitrogen atoms are directly involved in such processes and transformations. Labelling with ¹⁵N offers an additional advantage of observations of selected parts of such complicated molecular systems, and such studies by ¹⁵N NMR include in addition to those presented in the table; the synthesis of labelled nucleosides⁶⁸⁷ and deoxynucleosides⁶⁸⁸ of [1,3-¹⁵N₂]cytidine;⁶⁸⁹ the incorporation of ¹⁵NH₄ into the nucleoside structures of Methanobacterium thermoautotropicum; 638 labelled oligodeoxynucleotides, 222, 275, 690, 691 including a study of secondary isotope effects, ¹H/²D, on the nitrogen shieldings; ⁶⁹² the detection of pseudocyclic structures in aqueous AMP-5' and UMP-5';540,541 a nuleotide adduct of the carcinogen 2-acetylaminofluorene; 693 glyoxal-guanine adducts;¹¹⁶ ATP and AMP complexation with Escherichia coli adenylate kinase;⁶⁹⁴ the protonation of deoxydinucleotide monophosphates;⁶⁹⁵ some additional data on guanine and uracil, 696 on uridine and guanosine, 520 and on wyosine; ⁵²¹ 7-¹⁵N-labelled guanosine oligonucleotides, and their interactions with nuleic acids;²⁸⁰ [3-15 N]cytosine interaction with a threonine-containing tripeptide; 697 15 N/1 H correlations in Escherichia coli 5S RNA, 179, 278, 279 and in cytosine; 490 labelled DNA structures, 698 also in the solid state; 406 modified adenine in (+)-CC-1065-DNA adduct; ⁶⁹⁹ the protonation at N-1 of adenine in A-C and A-G mispairs in the duplexes {d[CG(15N)AGAATTCCCG]}, and {d[CGGGAATTC(15N)ACG]}₂;²²³ the protonation at N-1 and ionization at N-7 of adenosine and the keto-tautomer of 8-hydroxyadenosine;⁷⁰⁰ the protonation of cytidine in oligonucleotides;¹⁹⁴ DNA oligomers;²²⁴ uridine units in tRNA Phe from Escherichia coli hisT mutants; 225 amino group protection in DNA and RNA structures by arenesulphonylethoxycarbonyl groups. 701 Nitrogen NMR studies of purines include the purine dication Cu(II) chloro complex¹⁰² and the deamination of 1-aminopurinium salts.⁷⁰² The nitrogen shielding data⁷⁰³ for nucleoside analogues which are inhibitors of replication of human immunodeficiency virus (HIV) and Moloney murine leukaemia virus (MuLV) are presented in Table 14, note (e); those for vitamin B_{12} are shown in Table 34.

Theoretical calculations at the ab initio level have been carried out for the

nitrogen shieldings in Watson-Crick base pairs;⁷⁰⁴ and for DNA bases and the protonation effects on the shieldings.¹¹

6.9. Phosphazenes and related structures

These structures contain P=N moieties and are presented in Table 23. There is a vast difference in the nitrogen shieldings between the derivatives of penta-and trivalent phosphorus, $R_3P=N-R$ and R-P=N-R. The latter fall in the range characteristic of imines, $R_2C=N-R$ (Table 24), and of pyridine-type nitrogen atoms in aromatic heterocycles (see Section 6.7); this is also true for the P=N moieties within the aromatic rings of phosphazoles (Table 23, note (f)). The $R_3P=N-R$ structures, however, are characterized by nitrogen shieldings of +240 to +310 ppm with respect to neat nitromethane, that is higher by about 150 ppm as compared wth R-P=N-R; this holds for the ring structures of cyclophosphazenes also. Some additional data have been reported on the latter, 705 and on the correlations of the nitrogen shieldings presented in Table 23, note (a), with Hammett's constants for parasubstituents at the phenyl ring. 706

Attention is drawn to the first report of the nitrogen shielding in the iminophosphenium cation structure, $R-N^+\equiv P$, presented in Table 23, note (h).

6.10. Imines, nitrones, oximes and related structures

This group of structures is presented in Table 24, and includes imines, $R_2C=N-R$, their N-oxides (nitrones), $R_2C=N(O)-R$, and oximes, $R_2C=N-OR$, which are structural isomers of nitrones. Related to these are also the C=N moieties in guanidine, amidine, and amidoxime structures (see Table 10).

The nitrogen shieldings in imines are similar to those observed in pyridine-type nitrogen atoms in aromatic heterocycles (see Section 6.7 and Tables 17, 18, 19), and all the considerations of the latter apply also to imines, particularly with respect to the huge upfield shifts upon the protonation of the imino nitrogen atom (see Table 24, notes (j, m)), smaller but significant shifts in the same direction upon N-oxidation (to nitrones, in the present case), hydrogen bonding or complexation. Oxime nitrogen nuclei are generally less shielded than those in imines, and the latter are less shielded than those in nitrones, but the relevant ranges show some overlap. Ketenimines, $R_2C=C=N-R$, are an exception, since they show the highest shielding of the nitrogen nuclei, about + 170 ppm with respect to nitromethane (Table 24, note (r)).

Enamine-imino tautomerism in the solid state, involving double proton transfers, has been studied extensively by variable-temperature dynamic ¹⁵N CPMAS spectra^{427-430,432,433,436,437,545,546} (see also Section 6.6, and Table 24, note (b)). There is a large difference in the nitrogen shieldings of such tautomeric species, R—NH—CR=X and R—N=CR—XH, usually of about 150 ppm, which makes nitrogen NMR a suitable tool for studies of tautomerism involving imino units, also in solution.⁵⁸³

In addition to the nitrogen NMR studies of the imino moieties in bacteriorhodopsin, presented in Table 24, notes (j, m), there have also been other investigations^{407,409} in solution and the solid state. Imino groups have also been identified by means of nitrogen shieldings in a complex of [¹⁵N]alanine-phosphonate (AlaP) with alanine racemase,³⁵⁰ and in solid melanoidins.⁴⁰⁴

The $[-CR^1=N-N=CR^2-]_n$ polymers,³⁶⁷ which are precursors of organic conductors, give a signal at +28.1 ppm (natural-abundance ¹⁵N CPMAS), within the typical imino range, but the conductors obtained by oxidation ("doping") with iodine show a broad signal at +250 ppm;³⁶⁶ the latter was considered as evidence in favour of the formation of "bipolarons" (dications), $-N^+-CR=CR-N^+-$, involving nitrenium cation structures in the conducting polymer.

6.11. Sulphur-nitrogen bonds

There is a large variety of structures which contain sulphur–nitrogen multiple bonds, and these are presented in Table 25. In many instances the only feasible way to access such structures by means of NMR is via the nitrogen nuclei in view of the experimental difficulties concerned with sulphur NMR. The use of 15 N labels enables one to follow the fate of individual nitrogen atoms in reactions and rearrangements involving such structures, as was the case with the scrambling of the labels in the ring structure presented in Table 25, note (f), or the ring interconversion, note (i). The fate of the label in S_4N_4 was monitored in this way in a reaction with a platinum complex, cis-[PtCl₂(PMe₂Ph)₂], using 15 N- 31 P couplings also. 707 Unsymmetrical structures of S_3N_3 Cl₃ adducts with norbornene 708 have been characterized by means of 14 N NMR.

Sulphur-nitrogen single bonds are found in various structural units, and these are presented in Table 6 ($-S-NR_2$), Table 12 (sulphonamides, sulphenamides), Table 17 (isothiazoles), Table 20 (azine analogues containing SO_2 moieties), and Table 29 (R-S-N=0, thionitrite).

6.12. Nitro groups and nitrates

There is a clear difference in the nitrogen shieldings of nitro groups bound to carbon (nitroalkanes and nitroarenes), nitrogen (nitramines) and oxygen (covalent nitrates, $HO-NO_2$, N_2O_5), and the latter sequence corresponds to increasing shielding (Table 26). A deviation from this is found in the case of nitroalkanes, where the aggregation of two or more nitro groups at the same carbon atom brings the resonance into the range characteristic of nitramines; the same applies to polynitro-substituted benzene rings. Nitroalkanes which have only one nitro group at a given carbon atom can readily be distinguished from aromatic nitro compounds on the basis of the nitrogen shieldings; the same applies to a distinction among primary, secondary and tertiary nitroalkanes (MeNO₂, R-CH₂NO₂, R₂CHNO₂, R₃CNO₂), where the differences originate from the general β -effects of the alkyl groups concerned (see Section 5.3), provided that the same solvent is used. The latter distinction in nitroalkane mixtures is quite feasible even in 14 N NMR, in spite of the fact that the shielding differences are usually not larger than 10 ppm, since the corresponding signals are quite sharp, particularly in low-viscosity hydrocarbon solvents; this is especially true if the measurements are carried out in supercritical fluids²⁶⁹ (see Section 4.1).

However, one should be aware of the fact that the nitrogen shieldings in nitro groups are fairly sensitive to solvent effects (see Table 26, notes (a-d), and Section 5.4), mostly those of solvent polarity.

The nitrogen shielding in the nitrate ion, NO_3^- , falls into the range characteristic of C-nitro groups, but that in covalent nitrates (including HO— NO_2) is higher by about 40 ppm; this difference is responsible for the variation of the shielding observed in aqueous nitric acid, depending on the concentration of the latter. The shielding in the nitronium ion, NO_2^+ , is still higher, about + 130 ppm with respect to nitromethane (Table 30).

The amino nitrogens in nitramines are found at about +200 ppm from nitromethane in nitrogen NMR spectra, and this amounts to a deshielding by about 100 ppm with respect to C-amino groups.

There have also been other studies of nitro and nitrato moieties, in addition to those presented in Table 26. Nitro groups were monitored by ¹⁵N NMR in nitration processes and nitro group migrations⁴⁸⁷⁻⁴⁸⁹ (including CINDP effects, see section 4.5); in nitro group elimination via a rearrangement into the covalent nitrite; ⁷⁰⁹ in nitrimyoglobin obtained from the reaction of horse heart met-myoglobin with NaNO₂, where nitrogen NMR showed that a single nitrogen was introduced, as a nitro group; ⁷¹⁰ in some 2-nitro-anilines ⁷¹¹ and fluorinated nitrobenzenes; ⁵⁸¹ as substituents in some stable nitroxyl radicals; ⁶⁵⁷ in the covalent nitrato and nitramino groups of nitrocellulose and nitramine explosives, ^{379,380,712} including also denitration processes

in nitrocellulose and monosaccharide nitrates, ¹⁸³ and in cyclodextrin nitrates ¹⁸⁴ where it was shown that the process is highly regioselective, and takes place at C-2. Studies on ionic nitrates included nitrogen shielding anisotropy and phase transitions in solid ammonium nitrate, by ¹⁵N CPMAS spectra; ⁹² ¹⁴N relaxation measurements in zirconium nitrate in aqueous and HNO₃/H₂O solutions, indicating nitrate complexation to zirconium; ⁷¹³ ¹⁴N quadrupole coupling ¹⁴⁵ and shielding ²⁹⁴ tensors in single-crystal KNO₃; ¹⁴N measurements of the nitrogen shielding tensor for single crystals of silver, barium and lead nitrates; ²⁹⁵ the detection of the nitrate ion in liquid organic salts used as mobile phases in liquid chromatography; ⁵⁶⁷ and some additional data on HNO₃/H₂SO₄ systems. ⁷¹⁴ The nitrate anion, complexed to erbium (III) in aqueous solvent mixtures shows separate signals at – 200 to – 300 ppm with respect to nitromethane. ⁷¹⁵

6.13. Diazo structures, diazonium ions and diazoates

These structures are presented in Table 27. The nitrogen shieldings of the central nitrogen atoms, $=N^+=$, in diazo compounds and diazonium ions do not depart significantly from those observed in the analogous nitrogen atoms in azides (see Table 14). However, the terminal nitrogen nuclei, those in $=N^-$, are considerably less shielded than their azide counterparts. In diazo compounds, $R_2C=N^+=N^-$, there seems to be a trend of increasing the nitrogen shielding at the central atom and decreasing that at the terminal atom with increasing electron-attracting properties of substituents R (Table 27). Diazo compounds [19] are isomeric with the corresponding mesoionic structures of nitrile-imides [20], and there is a simple distinction between them in nitrogen NMR.

$$R_2C=\dot{N}=\dot{N}$$
 $R-C=\dot{N}-\dot{N}-R$ [19] [20] diazo compound nitrile-imide $ca. +120 \text{ ppm}$ $ca. +30 \text{ ppm}$ $ca. +300 \text{ ppm}$ (N^-)

In diazonium ions, $R-N^+\equiv N$, the shielding seems to increase in both cases, but the most significant changes seem to occur at the terminal nitrogens; attention is drawn to the substituent effects on the shieldings in para-substituted benzenediazonium salts in dilute solutions (Table 27, notes (f, g)). So far, attempts at obtaining the nitrogen NMR spectrum of the parent diazonium ion, $N\equiv NH^+$ (which may be also considered as protonated dinitrogen), have failed.⁷¹⁷

Diazoates, R—N=N—OR, whose nitrogen nuclei are deshielded with respect to the other two groups, differ also in the shieldings from azo compounds, R—N=N—R (Table 28, particularly in the R—N= moieties. There is a clear distinction, as far as the nitrogen shieldings are concerned, between *syn*- and *anti*-isomers of diazoates.

6.14. Azo, azoxy, azodioxy compounds, diazenes, triazenes and tetrazenes

This group of structures contains azo bridges, -N=N-, or their N-oxide forms (Table 28). The nitrogen shieldings of -N=N- seem to be quite immune to solvent effects, with the possible exception of strong hydrogenbond donors which seem to bind to the π -electron system of the azo bridge³¹ (Table 28, note (b)). There are significant differences in the nitrogen shieldings between the corresponding syn- and anti-isomers in such structures. Some OH-substituted azoarenes are in tautomeric equilibria with the corresponding hydrazone forms (see Sections 5.5 and 6.2, and also Table 9); in view of the vast difference in the relevant nitrogen shieldings, nitrogen NMR is especially suited to investigation of such tautomerism which frequently is concerned with the molecular structure of various azo dyes^{360,498,548,586,718-729} and their Co(III) complexes.⁶⁰⁶

Azoxy structures are mono-N-oxides of azo compounds, and the N-oxidation results in a considerable shielding increase in both of the nitrogen atoms of the azo bridge. Protonation of azoxy compounds (Table 28, note (n)) does not significantly affect the nitrogen shieldings, but diprotonation results in a shielding increase by about 100 ppm, and this is analogous to the changes observed upon the protonation of azo compounds in strong acids (Table 28, note (a)).

Azodioxy compounds are N,N'-dioxides of azo structures; they are also dimers of the corresponding nitroso compounds, and exist in equilibria with them. The difference in the nitrogen shieldings involved in such equilibria reaches 500 ppm (see also Table 29), and these have been studied quantitatively by ¹⁴N NMR using the differential saturation technique³⁰ (see also Section 4.4, Table 28, note (r), and Table 29, note (a)).

The diazene structure (Table 28, note (s)), $R_2N^+=N^-$, may be considered as the betaine-type isomer of the corresponding azo compound R-N=N-R, and there are vast differences in the nitrogen shieldings concerned. Triazenes may be divided into the amino-azo structures, $R-N=N-NR_2$, and the imino-azo structures $R_2C=N-N=N-R$, and they are characterized by nitrogen shieldings which are essentially those of the corresponding azo, enamino and imino moieties, respectively; the same is true for tetrazene structures, $R_2N-N=N-NR_2$ (see Table 28, notes

(s, t)). There have also been reported some additional data on aminoazo-type triazenes. ^{730,731} However, there seems to be a general, significant effect on the shieldings in systems X-N=N-R, where X is an atom which bears a lone electron pair, e.g. that in OR or NR_2 moieties; the nitrogen shielding increases, with respect to the azo structure R-N=N-R, at the N-R moiety of N-N=N-R.

6.15. Nitroso compounds, nitrosoamines, nitrites and related structures

These structures contain the nitroso group, -N=O, bound to either carbon or nitrogen or oxygen, respectively (Table 29). The nitrogen nuclei in C-nitroso compounds are among the most deshielded ones in diamagnetic molecules and ions; their resonances are found at about -600 to -400 ppm with respect to the nitromethane reference. Those of covalent nitrites, nitrous acid, and the nitrite ion appear at about -200 ppm, those of the nitroso groups in N-nitrosoamines at about -150 ppm, and the amino nitrogen in the latter at about +130 ppm (Table 29).

Nitrosoalkanes and nitroso-arenes exist in solutions in equilibria with their dimers, which have azodioxy structures (see Section 6.13, and Table 28) that give separate nitrogen signals at about +60 ppm. Quantitative ¹⁴N NMR measurements³⁰ show, for example, that Bu'NO exists as such in 60-88%, depending on the solvent used, and the accuracy of such assays is about 0.5%. The nitrogen shielding in the latter compound (Table 29, note (a)) is moderately affected by solvent effects, but they seem to originate mostly from solvent polarity, with little effect of hydrogen bonding, possibly owing to the steric hindrance effected by the t-butyl group. This is in constrast with the huge effects exerted by protic solvents on the nitrogen shielding in the nitroso moiety of $\{ON-C(CN_2)\}^-$ (see Table 29, notes (m, n) and also Section 5.4).

The covalent nitrito group (Table 29, note (d)) shows a wide range of solvent effects on its nitrogen shielding, and the most pronounced one seems to be the shielding increase upon hydrogen bonding from solvent to the lone electron pair at the nitrogen atom concerned (see also Section 6.4). The nitrito group, R-O-NO, is easily identified in nitrogen NMR, because of its characteristic shielding, about -200 ppm, which differs significantly from that of the corresponding nitro isomer, $R-NO_2$ (about -30 to +30 ppm, Table 26); this has been employed in the identification of nitrito structures that appear in rearrangements of nitro groups. Thionitrite nitrogen shielding (R-S-NO, see Table 29, note (g)) seems to fall close to shielding in C-nitroso compounds.

The nitrite ion, NO_2^- (about -228 ppm in aqueous solutions), usually shows a significant increase in its nitrogen shielding when the ion is com-

plexed to metal, in the so-called "nitro" complexes (Table 29); there have also been additional data on such complexes of cobalt, 732 but attempts at obtaining the 15N resonance signal in [Ru(13CN)₅(15NO₂)]⁴⁻ failed, for reasons unknown; and data on complexes with ruthenium, 734 rhodium, 735 iridium, 736 and platinum 737 have been reported.

A large variety of N-nitrosoamine structures have been studied by nitrogen NMR (Table 29). The nitrogen shieldings can be employed in the identification of Z,E-isomerism in the latter, and numerous examples are found in the table, particularly for cyclic N-nitrosoamines. Substituent effects on the shieldings in N-methyl-N-nitrosoamiline derivatives seem to be significant only for the nitroso moiety (Table 29, note (t)). The nitrosoamine structures have been identified, by means of ¹⁵N NMR, in some food products where sodium nitrate reacted with amino acid units. ⁷³⁸ Anions derived from N-nitrosoamine structures (Table 29, note (s)) are closely related to diazoates (see also Table 27), and various equilibria in such systems can be monitored by nitrogen NMR.

6.16. Dinitrogen and its complexes, diazenido complexes and related structures

The nitrogen shielding of dinitrogen (molecular nitrogen, N₂, see Table 31) is interesting for various theoretical and practical reasons. These include attempts at approaching the absolute scale of nitrogen NMR shieldings using quantum-mechanical calculations (see Section 3). However, the case of the two adjacent nitrogen atoms seems to be difficult at the ab initio level, since electron correlation effects have to be included. This point is illustrated by recent calculations, 739 where the second-order polarization propagator approximation (SOPPA) gave a value of -72.2 ppm for the absolute magnetic shielding constant for N2, while the coupled Hartree-Fock method (electron correlation neglected) yielded $-106.5\,\mathrm{ppm}$. The secondary isotope effect on the ¹⁵N shielding in ¹⁵N \equiv ¹⁴N, -0.0601 ppm with respect to that in ¹⁵N₂, was employed⁴⁹⁹ in the calculation of the derivative of the shielding vs bond length, $-910 \pm 42 \text{ ppm/Å}$. The spectra of ¹⁵N \equiv ¹⁵N in nematic-phase liquid crystals (EBBA and Merck ZLI 1132) gave a value of $+590 \pm 50$ ppm for the anisotropy of the shielding, $\sigma_{\parallel} - \sigma_{\perp}$.⁴⁷¹ An interesting example²⁸⁴ of ¹⁴N NMR imaging in liquid N₂ in contact with a superconductor was considered in Section 4.1. Upfield shifts of +2.5 and +9.5 ppm were observed for the resonance of ¹⁵N₂ upon the binding of the latter to Na⁺- and Mg²⁺-containing zeolites (types A and X), respectively, while no significant effects were found in the case of cation-free zeolites.740 There has recently been a thorough study⁷⁴¹ of ¹⁴N relaxation in gaseous N₂ mixtures with Ar,

Kr, Xe, CO, CO₂, HCl, CH₄ and CF₄ whose results were explained in terms of collision cross-sections for molecular reorientations.

Atmospheric N_2 dissolves in liquids to an extent which is high enough to show its resonance signal in nitrogen NMR spectra, and the latter is a potential internal reference for the calibration of nitrogen shieldings (see Section 3). However, solvent effects on the shielding in N_2 (Table 31, notes (b-d)), are small but significant enough to make this reference no better than external references without bulk susceptibility corrections.⁸¹

The nitrogen shieldings in dinitrogen as a ligand in metal complexes reveals the non-equivalence of the two nitrogen atoms (Table 31). In diazenido complexes, M—NN—R, the shieldings seem to depend significantly not only on the nature of the central metal atom, M, but also on the geometry of the ligand. Doubly bent diazenido ligands are characterized by nitrogen shieldings which are similar to those found in azo bridges (see Tables 31 and 28). In singly bent diazenido structures there seems to be a clear distinction, as far as nitrogen shieldings are concerned, between hexa-, penta- and tetracoordinate complexes (Table 31).

6.17. Nitrogen oxides and nitrogen-oxygen ions

Such nitrogenous species can be easily identified by means of nitrogen NMR (Table 30), in view of the large diversity of the nitrogen shieldings concerned. Nitric and nitrous acid systems have also been considered in Tables 26 and 29, respectively. As far as the relevant coupling constants are concerned, a new experimental approach has been offered by the use of supercritical fluids as solvents (see Section 4.1) for ¹⁴N NMR measurements at moderate temperatures; under such conditions, the spin-spin couplings between quadrupolar nuclei appear in the ¹⁴N spectra, ¹⁷⁸ e.g. those of N₂O, and they include ¹⁴N-¹⁴N and ¹⁴N-¹⁷O couplings. The latter are especially important, since it is practically the only way of accessing nitrogen-oxygen couplings (using ¹⁷O labels), while those between nitrogen nuclei can be measured in ¹⁵N-labelled samples.

Attention is drawn to the unusually high shielding of the nitrogen nucleus in the NO⁺ ion in a complex with the π -electron system of an arene (Table 30, note (c)). There are also some additional data on HNO₃ in tributylphosphate solutions⁷⁴² and on HNO₃-N₂O₅ systems.^{743,744} Stable nitroxide radicals which are formally the products of a homolytic cleavage of the O-H bonds in the corresponding hydroxylamino moieties are presented in Table 24, notes (p, x).

The ¹⁵N spectra of static solid ¹⁵N¹⁴NO under O₂ atmosphere were employed in analysing molecular motions in the solid.³⁴⁵

6.18. Nitrosyl, thionitrosyl and nitride complexes

Nitrogen NMR is a convenient tool for structural investigations of these complexes (Table 33). In analogous structures, the nitrogen nuclei in nitrosyl (NO) ligands are more shielded than those in thionitrosyl (NS) ligands. There is a large difference in the nitrogen shieldings between strongly bent and linear (or slightly bent) nitrosyl structures. Attention is drawn to the distinction between spatially non-equivalent nitrosyl ligand sites presented in Table 33, note (c). There are also additional data on nitrosyl-ruthenium complexes.⁷³⁴ A case was reported⁷³³ for nitrosylcyanoruthenates where, in spite of ¹⁵N-labelling, no signal of the nitrosyl ligand could be observed.

It is difficult to outline any general range of nitrogen shieldings in nitrides, since the latter depend on the nature of atoms coordinated to nitrogen (Table 33). An interesting example of differentiation of isomeric structures is presented in Table 33 (note (d)). As far as silicon nitrides are concerned, those presented in note (i) seem to represent the coordination of three silicon atoms to a nitrogen atom, since most recent results on silicon nitrides and YSiAlON glassy solids, obtained by ¹⁵N MAS NMR spectra, ⁴¹⁷ allow one to set some characteristic ranges for individual types of nitrogen coordination in such structures:

Coordination	Nitrogen shielding (ppm, vs neat nitromethane)
NSi ₃ and NSi ₂ Al	ca. +300
NSi ₂	+200 to +260
NSi	ca. +60

Such studies also included some silicon oxynitrides, 416 SiN₂O₂ and SiNO₃. There have also been some additional data on Mo and W nitrido complexes. 745

6.19. Vitamins, drugs and medicines

These do not constitute any chemical class of compounds, but their nitrogen shieldings are grouped in Table 34 for identification and analytical reasons. In addition, there has recently been a report on the nitrogen shieldings of the NMe₂ and CONHR groups in a group of tetracycline antibiotics in the solid state, ³⁸⁴ and on the amino groups in aminoglycoside antibiotics. ⁵⁶⁴

7. SOME NOTES ON 15 N COUPLING CONSTANTS

Since indirect spin-spin couplings of ¹⁴N are rarely observed, we consider only ¹⁵N coupling constants. The former can easily be recalculated into the latter using the relationship

$$J(^{15}N-X) = 1.4027 J(^{14}N-X)$$

The couplings have been considered in detail in refs 2 (pp. 261-317), 4 (pp. 110-127, 402-473) and 5 (pp. 191-200, 605-737). We present here only a shorthand-style account of the couplings and recent references in this field. For the sake of simplicity, absolute values (magnitude) of the constants are implied everywhere, except when the sign is given explicitly.

7.1. ${}^{1}J({}^{15}N-{}^{1}H)$

These coupling constants are negative, and their magnitudes seem to grow with increasing s-character of the bond concerned, 1-5 with certain exceptions, particularly for ketimines, $R_2C=NH$. Generally one can outline the following ranges for the constants:

Ketimines, R ₂ C=NH	$ca 50 \mathrm{Hz}$
NH in three-membered rings	-50 to -65 Hz
Alkylamines and ammonium ions	-60 to -80 Hz
hydroxylamines, hydrazines	
Arylamines and enamines	-80 to -95 Hz
NH ⁺ in cations derived from aromatic	$ca90 \mathrm{Hz}$
azine systems and from imines	
Amides and related structures	-90 to -100 Hz
NH moieties in aromatic azole systems	-95 to -110 Hz
Protonated nitriles, R—C≡NNH	$ca 135 \mathrm{Hz}$

These trends are also illustrated by numerous recent data in refs. 19, 21, 22, 53, 76, 84, 94, 99, 118, 120, 121, 126, 127, 148, 150, 152, 155, 162, 181, 193, 199, 203, 204, 220, 227, 235, 285, 412, 414, 495, 526, 528, 542–544, 546, 554, 563, 583, 604, 609, 618, 627, 665, 675, 693, 699, 720, 721, 723, 726–728, 745–810.

In amides and related structures, there is usually a difference of a few hertz between the relevant Z and E geometrical structures. The presence of lone-pair electrons at the nitrogen atom concerned seems to exert a quenching effect on the *magnitude* of the coupling; the effect is strong in structures where one can ascribe a significant s-character to the lone-pair orbital, and this

seems to explain⁵³ the low magnitudes of ${}^{1}J(NH)$ in imines with respect to the corresponding cationic structures (a difference of about 50 Hz) and in alkylamines with respect to the corresponding ammonium ions (a difference of about 10 Hz). The recent observation⁷⁷⁵ of ${}^{1}J({}^{15}N^{-1}H) = -54.7$ Hz in the lithium salt of aniline, PhNH⁻Li⁺, when compared with the corresponding values for arylamines (about -85 Hz), seems to corroborate this line of reasoning.

One-bond proton-nitrogen couplings are commonly employed in various polarization transfer techniques, in the identification of protonation sites and of various hydrogen-bearing nitrogenous moieties, and in studies on proton migration and tautomerism.

Fig. 4.

7.2. $^{2}J(^{15}N-X-^{1}H)$

Typical values^{4,5} of these coupling constants are presented in Fig. 4 (p. 71); in unsaturated or aromatic systems they seem to depend critically upon the presence or absence of lone-pair electrons at the nitrogen atom, and the geometrical orientation of the lone pair with respect to the hydrogen atom involved.

Additional data can be found in refs 21, 53, 76, 91, 106, 119, 122–125, 139, 140, 144, 148, 162, 203, 469, 521, 602, 620, 665, 675, 720, 721, 746, 750, 752–754, 762, 770, 772, 777, 779–782, 785, 789, 793, 794, 799, 801, 811–835. The couplings are employed in following nitrogen-proton connectivities in multidimensional NMR of peptides and proteins, in polarization transfer techniques for nitrogenous aromatic systems, and in identifications of geometrical isomers concerned with the presence of C=N bonds.

7.3. ${}^{3}J({}^{15}N-X-Y-{}^{1}H)$

These are usually negative, and do not exceed $-7\,\mathrm{Hz}$, with an exception of 1-N-3-H coupling in pyrazoles, where values of about $-11\,\mathrm{Hz}$ are observed. An important feature of such couplings in systems like [21] is the relationship between the dihedral angle Φ , N-C vs C-H, and the coupling constant, where the latter attains maximum magnitudes for $\Phi = 0^{\circ}$ and 180° , with a minimum at about 90°. Such relationships are commonly employed in conformational studies, particularly in the field of peptide systems. Such three-bond couplings in the systems considered are usually larger in magnitude than analogous $^2J(^{15}\mathrm{N-C-}^{-1}\mathrm{H})$ couplings.

Lone electron pair effects and spatial relationships seem also to be important for ${}^{3}J({}^{15}N-{}^{1}H)$ in other structures [22].

$$C = C$$

$$0 \text{ to } -3 \text{ Hz}$$

$$C = C$$

$$0 \text{ to } -3 \text{ Hz}$$

$$0 \text{ to } -5 \text{ Hz} \text{ (usually larger in magnitude than those above)}$$

$$[22]$$

In azine aromatic rings, the magnitude of the coupling seems to grow upon the protonation of the nitrogen atom, e.g. from about $-2\,\text{Hz}$ to $-4\,\text{Hz}$ in the case of pyridine.

Further, recent examples of such couplings are included in refs 53, 73, 75, 91, 99, 122, 124, 127, 133, 141, 148, 182, 203, 584, 608, 620, 646, 665, 675, 720, 746, 747, 752–754, 759, 762, 763, 766, 772, 781, 782, 785, 789, 793, 794, 797, 799, 801, 805, 811–813, 816, 818, 821, 825, 830, 833–845.

7.4. Long-range ¹⁵N-¹H couplings

Couplings across four bonds are usually positive and do not exceed 1.5 Hz, while those across five bonds are usually not larger in magnitude than 0.4 Hz.¹⁻⁵ A number of such couplings have also been reported in refs 91, 608, 746, 762, 772, 789, 791, 794, 799, 811, 813, 815, 825, 835, 846–848.

7.5. ${}^{1}J({}^{15}N-{}^{13}C)$

nitrogens in azoles

These are usually negative, but their range is +9 to -78 Hz.¹⁻⁵ They exhibit some relationship with the s-character of the bond concerned, but lone-pair electron effects tend to overwhelm this, as can be seen from the following characteristics.

Pyridine-type +3 to -3 Hz (about -13 Hz in protonated

nitrogens or N-oxide forms) Diazo compounds ca. -22 Hz (see ref. 837)

Nitriles ca. - 18 HzNitrile N-oxide -50 to -78 HzIsonitriles $ca. -9 \text{ Hz} (N \equiv C)$

Arenediazonium ions $ca. -15 \,\mathrm{Hz}$

Azo compounds + 2 to - 2 Hz (trans-forms)

ca. + 8 Hz (cis-forms)

=N(O)-C in azoxy ca. -18 Hz (trans-forms) compounds ca. -12 Hz (cis-forms)

Oximes +2 to -2 Hz

Hydrazones +4 to -4 Hz (C=N)

Recently there have been numerous reports on one-bond carbon-nitrogen couplings in refs. 45, 46, 48, 53, 75–77, 101, 132, 133, 141, 203, 331, 414, 438, 469, 495, 587, 600, 602, 607, 618, 720, 721, 723, 724, 731, 747, 750, 754, 762, 775, 785, 794, 801, 812, 813, 815–817, 827, 829, 849–886. The values of the couplings are important for setting up various multidimensional experiments which involve carbon and nitrogen nuclei.

7.6. Carbon-nitrogen couplings across more than one bond

Two-bond couplings, ${}^2J({}^{15}N{}^{-13}C)$, span a range of +10 to -11 Hz and exhibit significant sensitivity to lone-pair electron effects Fig. 5.4.5.53 There has been an example of ${}^2J({}^{15}N{}^{-}{\rm Fe}{}^{-13}C)$ couplings of 2-13 Hz in $N{\equiv}^{13}C{}^{-}{\rm Fe}{}^{-15}NO$ moieties in iron complexes.

Three-bond couplings, ${}^{3}J({}^{15}N{}^{-13}C)$, are usually negative, 0 to -5 Hz, and in saturated systems they exhibit a relationship with the dihedral angle that is similar to that considered in the case of ${}^{3}J({}^{15}N{}^{-1}H)$ couplings. In some instances where one-bond and two-bond carbon-nitrogen couplings are quenched by lone-pair electron effects, three-bond couplings can be the largest in magnitude; this happens in *trans*-azoarenes and pyridine-type heteroaromatics; in pyridine, the three-bond coupling is -4 Hz, and it is enhanced to about -5 Hz by protonation at the nitrogen atom concerned. Some carbon-nitrogen couplings in N-phenylbenzamides (about 14 Hz) which were reported 890 as ${}^{2}J(NC)$ or ${}^{3}J(NC)$ are evidently one-bond couplings, ${}^{1}J(NC)$.

Carbon-nitrogen couplings across more than three bonds rarely exceed 1 Hz.

Recent reports on carbon-nitrogen couplings across more than one bond are included in refs 45–48, 53, 75, 133, 141, 203, 414, 438, 587, 600, 602, 721, 723, 724, 730, 733, 747, 750, 754, 759, 775, 785, 812, 813, 815, 817, 824, 837, 838, 852–855, 861, 863, 864, 869, 871, 881, 887–890.

7.7. ¹⁵N-¹⁵N couplings

One-bond couplings, ${}^{1}J({}^{15}N-{}^{15}N)$, are usually negative, 4,5 with possible exceptions for hydrazines and pyrazoles; the absolute values can be summarized as follows.

ca. 5 Hz
ca. 2 Hz (ref. 75)
ca. 12 Hz (ref. 75)
10-15 Hz
(-)22 Hz (ref. 46)
14 Hz
ca. 15 Hz

```
Azide ion
                                            ca. 10 Hz
Covalent azides, R-N=N+=N-
                                            ca. 15 Hz (R-N=N^+)
                                            ca. 8 \text{ Hz} (N^+ = M^-)
                                            24 \text{ Hz} (Cl-N=N^+)
CI-N=N^+=N^-
                                             8 \text{ Hz} (N^{+} = M^{-})
Diazo compounds, R_2C=N^+=N^-
                                            ca. 9 Hz (ref. 837)
=N-NR,
                                            ca. 10 Hz
>N-N=0
                                            ca. 22 Hz
> N-NO_2
                                            5-9 Hz
=N-NO_2
                                            ca. 15 Hz (ref. 414)
Pyrazoles
                                            ca. (+)13 Hz
Hydrazines R<sub>2</sub>N-NR<sub>2</sub>
                                            ca. 3 Hz
```

Recent data on such one-bond couplings are included in refs 45, 46, 75, 84, 91, 205, 414, 585, 668, 720–722, 730, 745, 747, 750, 754, 812, 837, 852–855, 870, 888, 891–900.

Two-bond couplings, ²J(¹⁵N-¹⁵N), rarely exceed 5 Hz in magnitude. ^{4,5}

Azides
$$ca. 2 Hz$$
Pyrimidine rings $0 \text{ to } (+)2 Hz$
 $R_2 N$ — CN $ca. 3.5 Hz (ref. 870)$
 R — N = N — CN $ca. 5 Hz (N$ — CN , ref. 893)

 N = C
 NH_2
 $1-5 Hz$

In some cases, such couplings have been observed for nitrogenous ligands across the central metal atom in a complex, about 4 Hz for NO ligands across Fe, 888,895 and about 2.5 Hz for ethylenediamine ligands across Co. 852 Recent reports on $^2J(^{15}N-^{15}N)$ can be found in refs 730, 852, 854, 881, 888, 893, 895.

Three-bond couplings, ${}^3J({}^{15}N-{}^{15}N)$, are usually small, ${}^{4.5}$ but they have been observed (about 1 Hz) in R—N—N—CN systems. 893

7.8. ¹⁵N-³¹P couplings

One-bond couplings, ${}^{1}J({}^{15}N-{}^{31}P)$ not only exhibit large variations in magnitude, but can also be of either sign:^{4,5}

Pentavalent phosphorus + 100 to + 35 Hz Trivalent phosphorus + 13 to - 58 Hz

and without the knowledge of the sign one can devise a rule of thumb that

if the magnitude exceeds 60 Hz, pentavalent phosphorus is involved, and the constant is positive; if the magnitude is less than 35 Hz, trivalent phosphorus is concerned, but the sign of the coupling is uncertain. Recent examples are included in refs 83, 129, 152, 156, 176, 227, 656, 774, 818, 839, 885, 886, 891, 901–914.

Two-bond couplings, ${}^{2}J({}^{15}N{}-{}^{31}P)$ are usually within a range of 0-8 Hz, ${}^{1-5}$ but they can reach 55 Hz if the coupling takes place across the central metal atom in a complex (see also recent refs 139, 140, 155, 413, 597, 745, 818, 900, 910, 915, 916):

In the latter example, the cyanide ion is coordinated via N; if it is C-coordinated, the corresponding ${}^3J({}^{15}N-{}^{31}P)$ couplings amount to 4-9 Hz.⁵⁹⁷

7.9. 15 N-19 F couplings

One-bond couplings, ${}^{1}J({}^{15}N-{}^{19}F)$ are large and positive, 4,5 e.g.:

$$NH_3F^+$$
 + 48 Hz
 $FN=NF$ + 191 Hz (trans)
+ 203 Hz (cis)
 $FN=N^+$ + 475 Hz

and there have been no recent data.

Two-bond couplings, ${}^2J({}^{15}N{}^{-19}F)$ are fairly large and negative^{4,5} (see also recent refs 156, 745, 824, 829, 868, 917):

FN=NF
$$-102 \text{ Hz } (trans)$$

 $-52 \text{ Hz } (cis)$
fluoro-azines $ca. -50 \text{ Hz}$
CF₃NC $-15.5 \text{ Hz } (ref. 829)$

They can also reach significant values in complexes:

Three-bond couplings, ${}^3J({}^{15}N-{}^{19}F)$, in the last example 745 are also significant, about 13 Hz; in fluoro-derivatives of azine ring systems, 156 the couplings fall into the range -3 to -9 Hz; CF₃ substituents at the carbon atoms of the three-membered ring of azirine show nitrogen-fluorine couplings within 0-2 Hz, depending on the spatial relationship between the substituent and the lone-pair electrons at the nitrogen atom. 801

Four bond couplings, ${}^4J({}^{15}N{}^{-19}F)$ in perfluoropyridine 15 are also measurable, being 1–2 Hz in magnitude. There has been an interesting example 52 of four-bond nitrogen-fluorine coupling where non-bonding ("through-space") interactions between the atoms involved seem to play a crucial role [24].

FNOH

Me

$$^{4}J(^{15}N^{-19}F) = 22.4 \text{ Hz}$$
[24]

 $^{4}J(^{15}N^{-19}F) = 3.2 \text{ Hz}$

Nitrogen-fluorine couplings across five or six bonds are small, but they can sometimes be observed, e.g. in fluoro-substituted benzenediazonium tetra-fluoroborates⁷⁵ (0-1.1 Hz).

7.10. 15 N couplings to other nuclei

One-bond couplings to platinum, ${}^{1}J({}^{15}N-{}^{195}Pt)$, are useful in structural investigations of complexes⁵ (see also recent refs 349, 413, 577–579, 647, 839, 908, 918–929). For NO_{2}^{-} ligands, the coupling is within 360–680 Hz in square-planar complexes and exhibits significant variations depending on the arrangement of the ligands (e.g. > 470 Hz if the ligand is *trans* to halogen, and < 470 Hz if it is *trans* to another NO_{2}^{-}). In ammino-complexes (NH₃ ligands), the coupling is within 220–560 Hz. For imino-ligands, the coupling amounts to about 150 Hz. Analogous couplings across two or three bonds are smaller, but significant (25–60 Hz). A value of ${}^{2}J({}^{15}N-N-{}^{195}Pt)$ of about 70 Hz was observed in a diazenido ligand.

One-bond couplings to silicon, ${}^{1}J({}^{\bar{1}5}N-{}^{29}Si)$, in silylated amine systems^{4,5} (see also recent refs 51, 130, 132, 134, 143, 150, 154, 502, 570, 899, 930-936) seem to reflect steric strains in such structures:

Me₃Si—NR₂

ca. 17 Hz (typical value for no or little steric strain)

(Me₃Si)₂NH

(Me₃Si)₃N

8 Hz

Me₃Si—
$$N$$
 (CH₂)_n
 < 5 Hz ($n = 2$)

 $= 14$ Hz ($n = 3$)
 $= 16$ Hz ($n = 4$)
 $= 17$ Hz ($n = 5$)

In $(RO)_3Si-NR_2$ systems, the coupling is much stronger, 20–45 Hz. In silatranes, the coupling across the dative bond, $N \rightarrow Si$, is within 0.5–3.4 Hz.^{132,932}

One-bond couplings to tin, ${}^{1}J({}^{15}N{}^{-119}Sn)$, depend critically on the valence state of the latter^{4,5} (see also recent refs. 130, 134, 140, 144, 151, 153, 931, 940–942):

Sn(II) 250 to 480 Hz (absolute values)
Sn(IV)
$$-80$$
 to $+175$ Hz

and they are strongly influenced by geometry and lone-pair electron effects. In tin 8-quinolinothiolates, ¹⁴⁴ the observed coupling of about 80 Hz shows the formation of tin-nitrogen bonds.

One-bond couplings to lead, ${}^{1}J({}^{15}N{}^{-207}Pb)$, when the latter is bound to an amino moiety, range from 200 to 670 Hz^{5,130,151,153} for Pb(II); in (Me₃Pb)₃N, the coupling to Pb(IV) is +335.7 Hz.⁹³¹

 ${}^{1}J({}^{15}N-{}^{11}B)$ couplings are generally negative: ${}^{1-5,132,757,845,937}$

$$R_3N^+$$
— BR_3^- ca. -15 Hz R_2N — BR_2 0 to -45 Hz

When BR₃ is complexed to an anion (that of pyrazole⁸⁴⁵ or isothiocyanate⁹³⁷), couplings of about 30 Hz are observed.

¹J(¹⁵N-²⁷Al) couplings in AlCl₃ complexed with isothiocyanate or isocyanate anions are about 60 Hz;⁵ in acetonitrile complexed to Al, the coupling is about 30 Hz.⁹³⁴ Analogous couplings to ⁷¹Ga are within 100-160 Hz.^{5,934}

Lithium salts of amines, Li—NR₂, show ${}^{1}J({}^{15}N-{}^{6}Li)$ coupling constants of 3-5 Hz. 276,949

As far as 15N couplings to transition-metal nuclei are concerned, 195Pt has

already been considered in the present subsection. In the case of vanadium, ${}^{1}J({}^{14}N^{-51}V)$ couplings of about 105 Hz (i.e. about 145 Hz for ${}^{15}N$) were found in RN=V(OR)₃ structures. 945 In nitrosyl complexes of Mo, ${}^{1}J({}^{15}N^{-95}Mo)$ couplings amount to about 65 Hz. 5,948 In diazenido ligands attached to tungsten, ${}^{1}J({}^{15}N^{-183}W)$ is about 108 Hz. 900 Iron(II) complexes of porphyrin systems reveal ${}^{1}J({}^{15}N^{-57}Fe)$ coupling constants of about 8 Hz. 5 Cobalt complexes with nitrosyl and amino ligands show ${}^{1}J({}^{15}N^{-59}Co)$ of about 9 and 60 Hz, respectively. 5,947 Rhodium complexes with a variety of nitrogenous ligands (nitrosyl, R—NSO, dinitrogen), 5 including cyanide, 597 diazenido, 900 and azine 140 complexes, show ${}^{1}J({}^{15}N^{-103}Rh)$ constants within 5–30 Hz. In imino complexes of silver, ${}^{1}J({}^{15}N^{-107,109}Ag)$ couplings of 12–57 Hz were found. 136,138,946 In mercurcy complexes of amino moieties, 5 ${}^{1}J({}^{15}N^{-199}Hg)$ is in the range 300–400 Hz; in mercury fulminates, 951 ${}^{2}J({}^{15}N^{-199}Hg)$ is about 100 Hz for R—Hg—CNO structures, while it is enhanced to about 250 Hz in Hg(CNO)₂.

 $^{1}J(^{15}N^{-17}O)$ of 41.4 Hz was observed in nitromethane.⁴⁹⁵ The use of supercritical fluids as solvents⁸⁴ (see Section 4.1) revealed the $^{14}N^{-17}O$ coupling constants in N₂O, 37 Hz across one bond, and 5 Hz across two bonds; the corresponding ^{15}N couplings should then amount to about 52 and 7 Hz, respectively.

In F_5 TeNCO, ${}^1J({}^{14}N{}^{-125}\text{Te})$ of 153 Hz was observed, 938 and this yields about 225 Hz for the ${}^{15}N$ coupling. In F_5 SeNCO, the ${}^1J({}^{14}N{}^{-77}\text{Se})$ coupling constant is 50 Hz; 938 this means about 70 Hz upon recalculation to ${}^{15}N$.

¹J(¹⁵N-¹²⁹Xe) couplings in nitrile-XeF⁺ complexes are typically about 300 Hz,^{5,868} in analogous complexes with perfluoroazines,⁹⁵² the coupling is about 240 Hz.

8. RELAXATION PHENOMENA

8.1. 14N relaxation

Relaxation is governed mostly by the quadrupolar mechanism (see ref. 5, pp. 200-209, and references therein). Recently, the ¹⁴N nuclei in the NH moieties in protein peptide backbones have been employed as relaxation sinks in nuclear magnetic relaxation dispersion (NMRD) profiles for protons, ⁹⁵³⁻⁹⁶¹ which are also important in proton NMR tomography. The phenomena concerned involve interactions of protons from water with the NH moieties in peptides. Another interesting observation in recent studies on ¹⁴N relaxation comes from the use of supercritical fluids as solvents for nitrogenous compounds⁸⁵⁻⁸⁷ (see also Section 4.1) where the relaxation is slowed down so that spin-spin couplings of ¹⁴N with other, also quadrupolar, nuclei appear

in the spectra. On the other hand, it is possible to make some estimates of such couplings from the ¹⁴N relaxation effects in the spectra of the other nuclei concerned (e.g. ¹³C), measured in common solvents, ^{762,790} but this approach is certainly more prone to various errors.

The relaxation of ¹⁴N nuclei has traditionally been employed in studies of molecular and ionic motions and interactions in liquids and solids. 1-5 Numerous recent examples include glycine, betaine and trehalose as probes for microviscosity in cytoplasma; 621 cyclopeptides in interactions with Co²⁺:962,963 17O-enriched amino acids and peptides in interactions with Co²⁺. Cu²⁺ and Mn²⁺;⁹⁶⁴ hexamethonium²⁺ cation in interactions with NaDNA;⁹⁶⁵ acetonitrile, in interactions with Na⁺ and Pb⁺, 966,967 with Ga and Al ions, 934 with D₂O-NaI,⁹⁶⁸ with chloroform,⁹⁶⁹ and also CD₃CN with CDCl₃;⁹⁷⁰ acetonitrile in nematic phases vs isotropic solutions; 465 some nitriles, in the solvation sphere at Ni²⁺ at various temperatures and under pressures up to 220 MPa;662 methyl isocyanide in nematic liquid crystals;971 dimethylformamide; 972 urotropine in CCl₄ and in chloroform; 973 aniline, amides and phenylhydrazine;⁹⁷⁴ 4-methoxyaniline;⁹⁷⁵ pyrrole in cyclohexane, CCl₄ and perfluoropyridine;⁹⁷⁶ thiazole and isothiazole;⁹⁷⁷ pyridine, in complexes with Co²⁺; ⁹⁷⁸ 2-pyridone in hydroxylic solvents; ⁵³⁶ 2,5-dimethylpyrazine; ⁹⁷⁹ alkyltrimethylammonium salts as surfactants; 980-986 metal-ammonia solutions;554 aqueous methyl-substituted ammonium ions;987 aqueous ammonium cryptate; phosphatidylcholine in micelles and bilayers; and bilayers; and bilayers; and gases, also in mixtures with Ar, Kr, Xe, CO, CO₂, HCl, CH₄, CF₄ and SF₄;^{741,993} N₂O in hexane;⁹⁹⁴ aqueous SeCN⁻, SCN⁻, OCN⁻ and N₃; 995 aqueous NO₃, 996 and also the retardation of the relaxation in NO_3^- by counterions, 997 in the sequence $Sc^{3+} > La^{3+} > Pb^{2+} > Ca^{2+} > Sr^{2+} > Al^{3+}$, K^+ , Na^+ , $Me_4N^+ > Zn^{2+}$, Mg^{2+} , Li^+ , NH_4^+ , H_3O^+ ; aqueous zirconium nitrate; 713 solid $MeND_3^+NO_3^-$; 998 NO_3^- in barley, maize and pea roots;93 incommensurate and commensurate phases of solid (Me₄N)₂ZnCl₂,⁹⁹⁹ and spin-rotation relaxation in solid rotor KCN.⁴⁵⁴ We should also mention the effects of ¹⁴N relaxation, via NH proton transfer in solids, on the relevant ¹³C CPMAS spectra; ^{1000,1001} and the scalar relaxation of homonuclear multiple-quantum coherences which yield the signs of spinspin couplings in phenylformamide.⁷⁹²

8.2. ¹⁵N relaxation

The relaxation of non-quadrupolar ¹⁵N, and nuclear Overhauser effects (NOE) which appear in ¹⁵N NMR proton-decoupled spectra are also employed on a large scale in studies of molecular motions and interactions (see ref. 5, pp. 36-41, 210-211). While this method offers access to individual

nitrogen atoms in complicated molecular and ionic systems, owing to the spectral resolution available in ¹⁵N NMR, it suffers from the inherent low sensitivity of natural-abundance ¹⁵N measurements. With few exceptions, ¹⁵N-enriched samples have been used in such investigations.

Recent studies in this field include para-substituted anilines in CDCl₃, and the corresponding cations in DMSO; 1002 paramagnetic complexes of aniline with Ni(II); 1003 MeCH(NH₂)CH₂CH(NH₂)Me and the corresponding cations; 576 aqueous L-aspartic acid, 1004 in interactions with Cu²⁺ and Mn²⁺; amino acid residues in silk fibroin;110 polyamide368,370,372,1005,1006 and polyethyleneimine⁵⁷³ polymers; aqueous coacetate of polypentapeptide elastin; 1007 staphylococcal nuclease; 277 oxidized form of ferrodoxin; 1008 cytochromes c_2 and c'.627 adenosine; 520 4-methylbenzenesulphonamide complexed to bovine carbonic anhydrase; 1009 ion-pair formation in aqueous potassium hexacyanocobaltate; 1010 orientational freezing in KCN-KBr solid solutions; 333 solid-rotor KCN;454 dinitrogen, gaseous,499 in mixtures with buffer gases (Ar, Kr, Xe, CO, CH₄, CF₄, O₂, HCl), ¹⁰¹¹ and in Mo, W, Re and Os complexes; ¹⁰¹² NH₄⁺, aqueous ¹⁰¹³ and in a variety of solvents; ¹⁰¹⁴ phase transitions in solid NH₄ClO₄; ^{316,1015} solid NH₄NO₃, phase transitions. ⁴¹⁸ and the high mobility of the ammonium ions in the plastic phase, 1016 close to the melting point; aqueous ammonium cryptate; 988 alkyltrimethylammonium surfactants, 985 in aqueous micelles and in formamide; azide ion interaction with chloroperoxidase;1017 thiocyanate binding to lactoperoxidase651,1018 and to horseradish peroxidase, 653,1018,1019 and also evanide binding to the latter. 1019

List of Tables

1.	Conversion schemes for nitrogen NMR shieldings (σ)	85
2.	Nitrogen shieldings in various external reference substances with	
	respect to neat liquid nitromethane as a primary reference	86
3.	Nitrogen shieldings in ammonia, ammonium ion alkylamines,	
	alkylammonium ions and related structures	88
4.	Nitrogen shieldings in some enamines, enaminones and related	
	structures	105
5.	Nitrogen shieldings in amino groups coordinated to boron and	
	silicon	111
6.	Nitrogen shieldings in amino groups bonded to elements other	
		113
7.	Nitrogen shieldings in arylamines and arylammonium ions	128
	Nitrogen shieldings in hydroxylamines, hydrazines, hydrazides and	
	related structures	135
9.	Nitrogen shieldings in some hydrazones and related structures	140
10.	Nitrogen shieldings in ureas, thioureas, guanidines, amidines,	
	amidoximes and related structures	152
11.		
12.	Nitrogen shieldings in amides, thioamides, sulphonamides and	
	•	167
13.	Nitrogen shieldings in amino acids, peptides, proteins and related	
	structures	185
14.	Nitrogen shieldings in some azides	
15.	Nitrogen shieldings in cyanates, isocyanates, thiocyanates,	
	isothiocyanates and related structures	209
16.	Nitrogen shieldings in cyanides, isocyanides, fulminates and	
	related structures	212
17.	Nitrogen shieldings in azole ring systems and related structures	225
18.	Nitrogen shieldings in azolo-azine systems and related heterocycles	
19.	Nitrogen shieldings in azines and related heterocycles, their ions	
	and N-oxides	282
20.	Nitrogen shieldings in azine analogues containing the SO ₂ moiety	312
21.	Nitrogen shieldings in flavin and related pterin ring systems	314
22.	Nitrogen shieldings in nucleosides, nucleotides and related	
		318
23.	Nitrogen shieldings in phosphazenes, cyclophosphazenes and	
		332

LIST OF TABLES

24.	Nitrogen shieldings in some imines, nitrones, oximes and related	
	structures	336
25.	Nitrogen shieldings in various sulphur-nitrogen compounds	
	containing sulphur-nitrogen bonds	348
26.	Nitrogen shieldings in some nitro compounds, nitramines, nitrates	
	and related structures	355
27.	Nitrogen shieldings in diazo compounds, diazonium salts and	
	diazoates	367
28.	Nitrogen shieldings in azo, azoxy and azodioxy compounds,	
	diazenes, triazenes and tetrazenes	369
29.	Nitrogen shieldings in some nitroso compounds, nitrosamines,	
	nitrites and related structures	380
30.	Nitrogen shieldings in nitrogen oxides, nitrogen-oxygen ions and	
	related species	390
31.	Nitrogen shieldings in dinitrogen and its complexes, diazenido	
	complexes and related structures	392
32.	Nitrogen shieldings in ammino complexes and related structures	399
	Nitrogen shieldings in nitrosyl, thionitrosyl and nitride complexes	
	Nitrogen shieldings in some vitamins, drugs and medicines	
~	- 1 1111 O Hotel Office III Dollie 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Table 1. Conversion schemes for nitrogen NMR shieldings (σ)

Scheme no.	Observed shielding vs secondary reference II, $(\sigma_{\text{sample}} - \sigma_{\text{ref.II}})$	Shielding of ref. II vs that of primary reference I $(\sigma_{ref.II} - \sigma_{ref.I})$	Correction which should be added to the algebraic sum of the values in columns 2 and 3 in order to obtain true ("intrinsic") value of $(\sigma_{\text{sample}} - \sigma_{\text{ref.1}})$
I	true	true	none
IIa	apparent, field perpendicular to sample tube	true	$\frac{1}{6}(\chi_{\text{ref.II}} - \chi_{\text{sample}})$
ПР	apparent, field parallel to sample tube	true	$-\frac{1}{3}(\chi_{\text{ref.II}} - \chi_{\text{sample}})$
IIIa	true	apparent, field perpendicular to sample tube	$\frac{1}{6}(\chi_{\text{ref},I} - \chi_{\text{ref},II})$
ШЬ	true	apparent, field parallel to sample tube	$-\frac{1}{3}(\chi_{\text{ref.I}} - \chi_{\text{ref.II}})$
IVa	apparent, field perpendicular to sample tube	apparent, field perpendicular to sample tube	$\frac{1}{6}(\chi_{\text{ref.I}} - \chi_{\text{sample}})$
IVb	apparent, field parallel to sample tube	apparent, field parallel to sample tube	$-\frac{1}{3}(\chi_{\text{ref.1}} - \chi_{\text{sample}})$
IVc	apparent, field perpendicular to sample tube	apparent, field parallel to sample tube	$\frac{1}{6}(3\chi_{\text{ref.II}} - 2\chi_{\text{sample}} - 2\chi_{\text{ref.1}})$
IVd	apparent, field parallel to sample tube	apparent, field perpendicular to sample tube	$-\frac{1}{6}(3\chi_{\text{ref,II}}-2\chi_{\text{sample}}-2\chi_{\text{ref,I}})$

ref. I = primary reference (external neat nitromethane).

ref. II = any secondary reference actually employed.

true = true difference between NMR shieldings.

apparent = apparent (experimental) difference between the shieldings concerned in a system of coaxial cylindrical sample-reference tubes.

 $[\]chi$ (ppm) = magnetic volume bulk susceptibility expressed in SI system (see ref. 5, p. 221).

Table 2. Nitrogen shieldings in various external reference substances with respect to neat liquid nitromethane as a primary reference

		Nitrogen shielding (ppm) ^a			
			Apparent, in coaxial cylindrical t whose rotation axis makes the an specified with external magnetic f		
Substance	Solution or state	True	0°	90°	54°44′
MeNO ₂	neat liquid 0.3 m in DMSO 0.3 m in MeOH 0.3 m in CHCl ₃ 0.3 m in benzene	0.0000 - 2.0 + 2.0 + 3.8 + 4.4			
NaNO ₃	sat. in H ₂ O 0.3 M in H ₂ O	+ 3.7 + 3.5	(+5.1) (+4.9)	(+3.0) (+2.8)	
KNO ₃	0.3 м in H ₂ O	+3.5	(+4.9)	(+2.8)	
HNO ₃	1.0 M in H ₂ O 7.0 M in H ₂ O 10.0 M in H ₂ O 15.7 M in H ₂ O (70% w/w)	+4.4 +12.6 +18.2 +31.3	+6.2		
NH ₄ NO ₃	solid state ^c				+ 358.4 (NH ₄ ⁺ + 5.0 (NO ₃ ⁻)
	sat. in H ₂ O	+ 359.6 + 4.0	(+361.0) (+5.4)	(+358.9) (+3.3)	(NH ₄ ⁺ (NO ₃ ⁻
	4 m in 2 m HNO ₃	+ 359.1 + 5.6	(+360.5) (+7.0)	(+358.4) (+4.9)	(NH ₄ ⁺ (NO ₃ ⁻
	5 м in 2 м HNO ₃	+ 359.0 + 4.6	(+360.4) (+6.0)	(+358.3) (+3.9)	(NH ₄ ⁺ (NO ₃ ⁻
	5м in 2м HCl	+ 358.0 + 5.2			(NH ₄ ⁺ (NH ₃ ⁻
	4.5 m in 3 m HCl	+ 357.1 + 6.3			(NH ₄ ⁺ (NO ₃ ⁻)
	sat. in DMSO	$+358.1 \\ +3.3$			(NH ₄ ⁺ (NO ₃ ⁻)
NH₄Cl	solid state sat. in H ₂ O sat. in 2 M HCl 1 M in 10 M HCl	+ 352.9 + 352.5 + 349.9	(+354.7)	(+352.1)	+ 341.2°
$NH_4H_2PO_3$	solid state				+ 356.9°
(NH ₄) ₂ SO ₄	solid state	(two non-eq	quivalent sit	es)	$+355.7^{\circ} +356.0^{\circ}$

Table 2. —cont.

<u>, </u>		Nitrogen shielding (ppm) ^a			
			Apparent, in coaxial cylindrical tub whose rotation axis makes the angle specified with external magnetic fiel		nakes the angle
Substance	Solution or state	True	0°	90°	54°44′
Me ₄ N ⁺ Cl ⁻	sat. in H ₂ O 0.3 M	+ 336.7 + 337.7	+ 339.0	(+337.0)	
Me ₄ N + I -	0.3 m in H ₂ O sat. in DMSO	+ 337.3 + 337.0	+ 339.0	(+337.0)	
NaNO ₂	sat. in H ₂ O 0.3 M in H ₂ O	- 228.9 - 227.6			
K+NCO-	sat. in H ₂ O	+ 302.6			
PhNO ₂	neat liquid	+9.6		+ 9.9	
MeCN	neat liquid 0.3 m in MeNO ₂	+ 135.8 + 137.8			
KCN	sat. in H ₂ O 0.3 m in H ₂ O	+ 102.5 + 106.1			
N_2^{b}	in cyclohexane in benzene in CCl ₄	+ 70.2 + 70.4 + 69.8			
	in CHCl ₃ in CH ₂ Cl ₂ in Et ₂ O	+ 69.6 + 69.9 + 70.6	+71.3 +71.7		
	in acetone	+ 70.5	+71.5		
	in DMSO	+69.8	+70.6		
	in MeOH in EtOH in CF ₃ CH ₂ OH	+ 70.8 + 70.4 + 71.5	+71.6		
	in H ₂ O	+69.6	+71.5		
Me_2NCHO	neat liquid	+ 277.0			
H ₂ NCHO	neat liquid		+268.8	+ 267.8	+ 266.7°
Glycine ^c	solid state				+ 347.6°
NH ₃	neat liquid	+381.9		+ 380.2	

⁽a) If not stated otherwise, the values come from ref. 5, pp. 222-226, and references therein; the values in parentheses were calculated using the relevant susceptibilities.

⁽b) See Table 31, and references therein.

⁽c) Data from ref. 82, 40.561 MHz ¹⁵N spectra, ¹⁵N-labelled and unlabelled samples, solids and liquids, static and MAS spectra; originally referred to neat liquid nitromethane, whose resonance frequency was shown to be constant (within 0.04 ppm), in the case of proton-coupled spectra, for cylindrical sample (spun at a magic angle as well as static) and for a spherical sample; temperature + 21°C.

Table 3. Nitrogen shieldings in ammonia, ammonium ion, alkylamines, alkylammonium ions, and related structures

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
NH ₃	neat liquid, +35°C	+ 381.9 (corr.)	(a)
3	*	+ 380.2 (uncorr.)	(a)
	inf. dil. in Me ₂ O	+ 390.1 (uncorr.)	(a)
	inf. dil. in H ₂ O	+ 378.4 (uncorr.)	(a)
	gas, zero pressure	+ 400.9 (uncorr.)	(a)
NH ⁺	various	+324.5 to $+369.6$	(a)
•	(see also Table 2)		
NH₄NCS	solid	+ 345.8	(b)
NH ₄ ClO ₄	solid	+ 359.4	(c)
MeNH ₂	40% in H ₂ O	+ 370.6	(d)
MeNH ₃ ⁺	various	+357 to +361	(a)
R-CH ₂ NH ₂ structures and co	orresponding ions		
EtNH ₂	70% in H ₂ O	+ 349.2	(d)
PrNH ₂	neat liquid	+ 356.0	(d)
BuNH ₂	neat liquid	+ 353.4	(d)
Bu ⁱ NH ₂	neat liquid	+ 359.4	(d)
_	in DMSO	+ 361.6	(e)
Bu'CH ₂ NH ₂	in DMSO	+ 366.2	(e)
PhCH ₂ NH ₂	neat liquid	+ 357.3	(g)
$H_2N-CH_2-NH_2$	in EtOH/H ₂ O	+361.3	(g)
CH,NH,	in H ₂ O	+ 360.8	(h)
\N		+ 75.1 (ring N)	(h)
CH ₂ NH ₃ *	in H_2O , $pH = 0$	+ 351.7	(h)
-N Citizani	m **20, pr = 0	+ 86.2 (ring N)	(h)

R₂CH-NH₂ structures and corresponding ions

Pr'NH ₂ Bu'NH ₂	neat liquid neat liquid	+ 332.5 + 337.5	(d) (d)
NH ₂	neat liquid	+ 335.7	(d)
$[-CH_2-CHNH_2-]_n$	in 10% D_2O , pH > 10		(i)
(poly(vinylamine))	mm triads	+333.7	•
m = meso $r = rac$	mr triads	\begin{cases} + 335.5 \ + 336.0 \end{cases}	
	rr triads	$ \begin{cases} +336.8 \\ +337.3 \\ +337.8 \end{cases} $	
	in 10% D_2O , pH < 4 all triads	ca. + 328	
HN NO ₂ NR	in liquid NH ₃ R = H R = OMe	+ 326 (NH ₂) + 326 (NH ₂)	(j)
NH ₂ NO ₂ NI NR R	in liquid NH_3 R = H R = SMe $R = SO_2Me$	+ 335 (NH ₂) + 327 (NH ₂) + 324 (NH ₂)	(j)

Table 3. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R ₃ C-NH ₂ structures and correspon	nding ions		
$Bu'NH_2$ $N_2N-CMe_2-CH_2-NH_2$ $H_2N-CMe_2-CH_2-NHPr'$	neat liquid 30% in C_6D_6 30% in C_6D_6	+ 317.3 + 333.3 (NCMe) + 368.4 (NCH) + 328.6 (NCMe)	(d) (k) (k) (k) (k)
NH;	in H ₂ O	+ 329.2 (NCH) + 315.2	(k) (l)
$HC = CH_2 - CH_2$ $CH_2 - CH_2$ $CH_2 - CH_2$ CH_3	in H ₂ O	+319.6	(1)
$\begin{array}{c} CH_2 \\ CH_2 - CH_2 \\ CH_2 - CH_2 \end{array}$	in H ₂ O	+ 331.3	(1)
$HC = CH_2 - CH_2 - C - NH_3^*$ CH_2	in H ₂ O	+ 329.7	(1)
HC CH_2 CH_2 $C-NH_3^*$	in H ₂ O	+ 327.2	(1)

R₂NH structures and corresponding ions

1021 111 Structures and corresponding	ig ions		
Me ₂ NH Et ₂ NH (PhCH ₂) ₂ NH	various in CDCl ₃ neat liquid	+ 374 to + 371 + 333.7 + 340.3	(a) (m) (g)
NH	in CDCl ₃	+ 342.0 + 343.2	(n) (m)
its adduct with benzylidene-N,N'-dimethylbarbituric acid and p-chloro derivative thereof	in CDCl ₃	+ 324.2	(n)
O_NH	in CDCl ₃	+ 347.8	(n)
its adduct with benzylidene-N,N'-dimethylbarbituric acid and with p-chloro derivative thereof	in CDCl ₃	+ 331.8 to + 327.6	(n)
HNNH	in CDCl ₃	+ 346.4	(m)
Bu'NH—CH ₂ CH ₂ —NHBu'	30% in C ₆ D ₆	+ 327.7	(k)
NH ₂ *	in D ₂ O	+332.7	(o)
R^3 R^4			

neat liquids

(p)

Table 3. —cont.

Compound					Solution or state		Nitrogen shielding (ppm) referred to neat nitromethane			Notes	
R^1	R ²	R³	R ⁴	R ⁵							
H	Н	Н	Н	<u>н</u>			+ 339.8				
Me	H	Н	Н	H			+321.7				
H	Н	Me	Н	H			+340.8				
Me	Me	Н	Н	Н			+311.3				
Me	H	H	Н	Me	(cis)		+302.0				
Me	Н	H	Н	Me	(trans)		+307.7				
Me	H	Н	Me	H	(cis)		+ 324.4				
H	Me	H	Me	H	(trans)		+ 321.6				
Me	H	Me	H	H	(cis)		+ 327.4				
H	Me	Me	H	H	(trans)		+ 322.4				
Me	Me	Н	Н	Me			+311.4				
(8) (1) (7) (NH NH (2) (6) (NH NH (3) (5) (4)			in D_2O	tran cis	s + 331.5 + 339.8				(p)		
	5,8-tetr deriva		ecaline	e, "TAD")			N-1	N-4	N-5	N-8	(q)
2.6-N	1e ₂ -TA	D			in D ₂ O			*			
,	4				trans-e,e		+316.1	+ 331.1	+ 316.1	+ 331.3	
					trans-e,a		+317.7		•	•	
2,2,6,6-Me ₄ -TAD					in D ₂ O		+308.9				
$2,2,7,7-Me_4-TAD$					in D_2O		+308.3	+337.9	+337.6	+ 308.9	
1,5-N	$1e_2$ -TA	D			in CDCl ₃						
					trans (ring)		+332.8	+ 341.4	+332.8	+ 341.4	
					cis (ring)		+340.4		-		
			cis (ring), $+50$ °C		+334.7	+ 356.9	+334.7	+ 356.9			

+337.6 + 333.1 + 341.8 + 335.4

("DBTAD")

R₃N structures and corresponding ions

(q)

$$+332.1 +330.1$$

+355.0

(g)

Me, N

$$+338$$

Table 3. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
CH_2Ph	in acetone	+ 339.6	(g)
$PhCH_2$ — N X OMe	in CDCl ₃		(r)
X = S $X = Se$		+ 342.2 (N-C-C) + 332.0 (N-C-O) + 343.1 (N-C-C) + 332.3 (N-C-O)	
PhCH ₂ N CH ₂ Ph	in CDCl ₃	+ 335.7	(r)
MeO NH ⁺ CH ₂ Ph	in DMSO	+ 326.4	(r)

Tetraalkylammonium ions, NR₄⁺

NMe ₄ ⁺ Cl ⁻	0.3 м in H ₂ O	+ 337.7	(a)
NMe ₄ I	$0.3 \mathrm{M}$ in $\mathrm{H}_2\mathrm{O}$	+ 337.3	(a)
NEt ₄ Cl	$0.3 \mathrm{M}$ in $\mathrm{H}_2\mathrm{O}$	+ 316.3	(a)
NPr ₄ ⁺	occluded in ZSM-5	+ 315.1	(u)
	zeolite and silicalite		` '

Table 3. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Some miscellaneous amino and	ammonium structures		
Me N O CI -	in D ₂ O, 300 K	+ 321.5 (doublet, 29 Hz)	(0)
Me N O	298.5 K	$\begin{cases} +344.3 \text{ (doublet, 4 Hz)} \\ +298.5 \text{ (doublet, 62 Hz)} \end{cases}$	
N(CH ₂ CH ₂ NH ₂) ₃	in CDCl ₃	+ 360.9 (N) + 364.4 (NH ₂)	(m) (m)
NR R	in CH ₂ Cl ₂		(v)
R R ¹ Me 2,3,4,5-F ₄ CH ₂ Ph 2,3,4,5-F ₄ H none		+ 251.5 + 243.2 + 239.6	
Me OMe NR I	in CH ₂ Cl ₂		(v)
R = H R = Cl		+ 251.7 + 200.1 (syn) + 218.3 (anti)	

```
OMe
   Me
                                                   in CH<sub>2</sub>Cl<sub>2</sub>
 [ NH
                                                                                                +214.4
                                                                                                                                                       (v)
         ОМе
         (aziridines)
                                                   50% in CDCl<sub>3</sub>
                                                                                                                                                       (w)
<u>R</u>
Н
                                                                                               +390.4
                                                                                               +380.0
Me
CH<sub>2</sub>OH
                                                                                               +356.0
                                                                                               +363.5
CH<sub>2</sub>OMe
                                                                                               +374.9
CH<sub>2</sub>COOMe
                                                                                               +373.0
CH<sub>2</sub>C≡CH
                                                                                               +368.8
CH<sub>2</sub>CH=CH,
                                                                                               +367.4
CH<sub>2</sub>CH<sub>2</sub>CN
CH_2-N
                                                                                               +365.3
CH<sub>2</sub>—N
                                                                                               + 365.7 (3-membered ring)
                                                                                               +328.7 (5-membered ring)
CH<sub>2</sub>Ph
                                                                                               +365.6
Cl
                                                                                               +330.9
NH_2
                                                                                              +338.1 (N)
                                                                                              +282.6 (NH<sub>2</sub>)
SiMe<sub>3</sub>
                                                                                              +384.3
                                                                                                                                                                  97
```

Table 3. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
N Me	50% in CDCl ₃		(w)
R			
Me		+ 364.8	
CH ₂ —N		+ 350.7 (3-membered ring) + 321.6 (5-membered ring)	
CH ₂ —NO		+ 352.3 (3-membered ring) + 328.3 (6-membered ring)	
NH ₂		+ 323.7 (N) + 282.6 (NH ₂)	
N COOMe	50% CDCl ₃		(w)
R = CH2OH $R = CI$ $HSCH2CH2NH2$	in CDCl ₃ in CD ₃ OD	+ 335.8 + 318.8 + 361.5 + 359.8	(x) (x)
HSCH ₂ CH ₂ NH ₃ ⁺ Cl ⁻	in CD ₃ OD	+ 349.1	(x) (x)

	CH ₂ CH ₂ NH ₂	in CDCl ₃	+ 360.6	(x)
	H ₂ CH ₂ NMe ₂	in CDCl ₃	+ 355.9	(x)
HSC	$H_2CH_2NEt_2$	in CDCl ₃	+ 335.3	(x)
***		in CD ₃ OD	+331.6	(x)
	H ₂ CH ₂ NH ⁺ Et ₂	in CD ₃ OD	+ 325.4	(x)
	CH ₂ CH ₂ NEt ₂	in CDCl ₃	+ 334.2	(x)
R ₃ ¹ SnSCH ₂ CH ₂ NR ₂ ²		in CDCl ₃		(x)
\mathbb{R}^1	\mathbb{R}^2			
Bu	Et		+ 332.6	Z
Me	Me		+ 353.8	3
Ph	Me		+ 354.6	, O
R ₂ Sn	(Cl)SCH ₂ CH ₂ NR ₂	in CDCl ₃		NITROGEN NMR SPECTROSCOPY
\mathbb{R}^1	\mathbb{R}^2	·		MR.
Et	Н		+ 351.3	SPI
Me	Me		+ 349.9	Ĉ
Bu	Н		+ 348.9	Ę
Me	H		+ 348.9	SO
Oct	H		+ 348.7	8
Me	Et		+ 336.0	PΥ
Bu	Et		+ 334.5	•
R ₂ ¹ Sn	$(SCH_2CH_2NR_2^2)_2$	in CDCl ₃		(x)
\mathbb{R}^1	\mathbb{R}^2			
Et	——— Н		+ 356.6	
Oct	H		+ 356.1	
Bu	Н		+355.9	
Me	H		+353.5	99
Bu	Et		+ 332.6	· ·
				

Table 3. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me ₃ SnCH ₂ N(Me)CH ₂ CH ₂ NMe ₂ Pr ⁱ ₍₂₎	in toluene	+ 348.8 (NMe) + 354.6 (NMe ₂)	(f) (f)
N (2) N (3) N Pr	in CDCl ₃		(y)
R		N-1 N-2 N-3	
H COOMe Me CH ₂ OH	(-22°C)	+ 249.1 + 239.0 + 241.2 + 224.8 + 213.4 + 227.2 + 244.9 + 225.9 + 222.7 + 241.5 + 233.2 + 225.9	
$\Pr \left(\begin{array}{c} i \\ N \\ N \\ N \\ (1) \\ 1 \\ R \end{array} \right) \Pr \left(\begin{array}{c} i \\ (3) \\ \end{array} \right)$	in CDCl ₃		(y)
R		N-1 N-2,3	
H COOMe CH ₂ OH	(-27°C)	+ 260.3 + 236.2 + 235.2 + 215.3 + 239.6 + 223.5	
(3) N N (1) R (2)	in CDCl ₃		(y)

R H COOMe Me CH ₂ OH NH ₃ and NMe ₃ adsorbed on zeolite Y NH ₄ ⁺ coordinated to zeolite, not removed by outgassing NH ₄ ⁺ , hydrogen-bonded, removed by outgassing NH ₃ , hydrogen-bonded Me ₃ NH ⁺ Ammonium moieties in biochemical structures Dipalmitoyl-phosphatidyl-	(in DMSO) (-30°C) solid state	N-1 N-2, 3 + 285.4 + 260.8 + 285.8 + 261.2 + 260.9 + 241.2 + 275.7 + 241.8 + 263.4 + 248.0 + 353, + 357 + 358, + 361, + 364 + 360 + 346	(z)	NITROGEN NMR SPECTROSCOPY
choline (DPPC) —CH ₂ —NMe ₃ ⁺ moieties	(aqueous dispersion) (in MeOH) (in chloroform)	+ 333.7 + 333.4 + 332.9	(A) (A) (A)	
Dipalmitoyl-phosphatidyl- ethanolamine (DPPE) —CH ₂ —NH ₂ /—NH ₃ ⁺	(in H_2O , $pH = 5$ to 7) (aq. disp., $pH 5$ to 9) (aqueous, $pH = 12$)	+ 352.7 + 352.7 + 364	(A) (A) (A)	101

Table 3. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Pig heart and kidney tissues NH ₄ ⁺ choline —CH ₂ NMe ₃ ⁺ betaine (trimethylglcine)— CH ₂ NMe ₃ ⁺	(aq. disp.)	+ 359.1 + 332 + 333	(B) (B) (B)
synthetic dopa melamin ammonium/amino moieties	(solid state)	+ 353	(C)
H_3N^+ — $CH_2CH_2PO_3H^-$	solid state	+ 339.7	(D)
H_3N^+ — CH_2CH_2C — PO_3H^- PO_3H_2	solid state	+ 339.7	(D)
$N \stackrel{N}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{$	in aqueous NaOH	+ 349.6 (NMe ₂)	(E)
$\begin{bmatrix} N^{\prime} N \\ 1 & - \\ N - N^{\prime} \end{bmatrix} C - CH_2CH_2 $ NH	in aqueous NaOH	+ 247.2 (NH)	(E)

⁽a) See ref. 5, pp. 244-263, 290-296, and references therein.

⁽b) Data from ref. 351, 20.3 MHz ¹⁵N CPMAS and static powder spectra, referenced originally to liquid NH₃, + 381.9 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).

⁽c) Data from ref. 296, 28.913 MHz ¹⁴N single-crystal spectra, referenced originally to solid NH₄Cl, +341.0 ppm from neat nitromethane (uncorrected, see Table 2).

- (d) Data from ref. 563, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to formamide in DMSO, +264.7 ppm from neat nitromethane (Table 2), conversion scheme IVb (Table 1); reported originally vs fictitious ammonia standard taken at +112.2 ppm from the reference employed.
- (e) Data from ref. 1020, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (f) Data from ref. 1021, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (g) Data from ref. 442, 36.5 MHz ¹⁵N spectra, field parallel to sample tube, and 20.3 MHz CPMAS ¹⁵N spectra, referenced originally to liquid NH₃, + 381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (h) Data from ref. 1022, 25.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, but reported vs fictitious ammonia standard taken at +380.2 ppm from the actual reference employed; the latter value does not pertain to the field-to-sample setup involved (Table 2).
- (i) Data from refs 1023 and 995, $30.5 \,\mathrm{MHz}^{15} \,\mathrm{N}$ spectra, field parallel to sample tube, referenced originally to $\mathrm{NH_4Cl}$ in $10 \,\mathrm{m}$ HCl, $+349.9 \,\mathrm{ppm}$ from neat nitromethane (Table 2), conversion scheme IIb (Table 1); originally reported vs fictitious ammonia standard taken at $+30.3 \,\mathrm{ppm}$ from the reference employed, see comments in footnote (h).
- (j) Data from ref. 162, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to nitromethane in MeOH, calibrated (+ 1.97 ppm, uncorrected) against neat nitromethane, conversion scheme IVb (Table 1).
- (k) Data from ref. 1024, 20.3 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced originally to 0.1 M nitromethane in CDCl₃, +3.8 ppm from neat nitromethane (Table 26), conversion scheme IIb (Table 1).
- (l) Data from ref. 1025, 9.04 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to aqueous NH₄Cl, + 352.9 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
 - (m) Data from ref. 930, 36.5 MHz ¹⁵N spectra, other details as in footnote (e).
- (n) Data from ref. 1026, 25.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (o) Data from ref. 1027 and ref. 1028, 8.1 MHz ¹⁵N spectra, ³¹P-coupled, field perpendicular to sample tube, referenced to 1 M HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (p) Data from ref. 1029, 8.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane (uncorrected for bulk susceptibility effects) via a calibrated sample of aqueous HNO₃.
- (q) Data from ref. 513, 40.6 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (r) Data from ref. 159, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄ in aqueous NH₄NO₃, + 359.6 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1), but reported vs fictitious ammonia standard taken at + 19.7 ppm from the reference employed; we retrieved the original values and recalculated them as noted above.

- (s) Data from ref. 803, 40.5 MHz spectrum, details as in footnote (v).
- (t) Data from ref. 1030, ¹⁵N label, 9.04 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; originally reported vs liquid NH₃ reference taken at + 380.2 ppm from neat nitromethane; only a broad singlet was observed at room temperature.
- (u) Data from ref. 355, 30 MHz ¹⁵N CPMAS spectra, referenced originally to solid NH₄Cl, +341.0 ppm from neat nitromethane, uncorrected for bulk susceptibility effects (see Table 2).
- (v) Data from ref. 1031, 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; proton-coupled and decoupled spectra, Cr(acac)₃ added as a relaxation reagent.
- (w) Data from ref. 1032, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (x) Data from ref. 768, 18.2 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects except for those resulting from the presence of some Cr(acac)₃ in the reference sample employed.
- (y) Data from refs 119 and 1033, 20.3 and 40.6 MHz ¹⁵N INEPT and DEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
- (z) Data from ref. 422, 20.3 MHz ¹⁵N CPMAS spectra, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; 3-4 MHz spinning rate.
- (A) Data from refs 461, 470 and 565, 25.34 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (B) Data from ref. 566, 28.91 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to 1 m NaNO₃, + 3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (C) Data from ref. 363, 30.41 MHz ¹⁵N CPMAS spectra, referenced originally to aqueous NH₄Cl, +352.9 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
- (D) Data from ref. 411, 30.4 MHz ¹⁵N CPMAS spectra, referenced to NO₃ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
- (E) Data from ref. 1034, 30.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

Table 4. Nitrogen shieldings in some enamines, enaminones and related structures

Comp	ound	İ		Solution or state	Nitrogen sh (ppm) referr nitromethan	red to neat	Notes
H ₂ C=	C P			neat liquid	+ 306.4		(a)
Me ₂ C=	=c<	Ph NMe ₂		neat liquid	+ 352.1		(a)
0	`n—			in CDCl ₃	+ 311.9		(b)
R^4 C:	=c<	r ¹ 'nhr²		in DMSO or CDCl ₃			
\mathbb{R}^1	R²	\mathbb{R}^3	R ⁴		(in DMSO)	(in CDCl ₃)	
H	Ph	CN	COOEt	(Z-isomer) (E-isomer)	+ 249.6 + 253.1	+ 246.9 + 250.5	(c) (c)
Н	Ph	COOEt	COOEt	` ,	+251.8	+251.8	(c)
Н	Ph	COMe	COOEt	(Z-isomer)		+248.0	(c)
				(E-isomer)	+ 246.2	+246.3	(c)
H	Ph	COMe	COMe		+ 247.6	+ 247.5	(c)
Me	Ph	CN	H	(E-isomer)		+ 264.7	(c)
Me	Ph	CN	COOEt	(Z-isomer)		+245.3	(c)
Me	Ph	CN	CSSEt	(Z-isomer)		+231.8	(c)
Н	Н	CN	COOMe		+ 279.1	+265.0 +270.6	(c)
Н	Н	COOEt	COOEt		+ 275.4	+ 269.6	(c)
H	H	COOMe	COOEt	(Z-isomer)	+271.7	+264.8	(c)
				(E-isomer)	+269.7	+262.9	(c)
Н	Н	COMe	COMe	,	+274.8	+264.2	(c)
Me	Н	COOMe	H		+277.0		(d)
OMe	Н	CN	COOMe	(NH_2)	+288.5		(e)
				(CN)	+ 121.8		(e)
R Me	Ph N-H	R Me		in DMSO (R = COMe) (R = COOMe)	+ 241.3 + 246.3		(d) (d)

Table 4. —contd.

Table 4. Coma.			
Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R N Me	in CDCl ₃ (R = H) (R = Me) (R = SEt) (R = Cl) (R = Br) (R = SOEt) (R = SO ₂ Et)	+ 234.2 + 229.7 + 229.9 + 231.0 + 230.0 + 241.7 + 244.1	(f)
R N Me	in CDCl ₃ (R = Me) (R = COMe) (R = COOMe) (R = CI) (R = Br) (R = I)	+ 236.4 + 233.0 + 231.6 + 235.3 + 232.5 + 228.0	(f)
H ₂ N CH ₂ CONH ₂ OMe NH	in DMSO in DMSO + ZnCl ₂ + CuCl	+ 286.8 (7-N) + 295.3 (7-N)	(g) (g)
(mitomycin C) H R ² R ¹	in DMSO		(h)
R ² R ³ H Me COOEt Me COOEt p-NO ₂ C ₆ H ₄ CH=CH		+ 246.2 + 245.1 + 255.9	
COOE!	in CDCl ₃	+85.0 (C=N)	(h)

Table 4. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me Me CH ₂	in Et₂O, −80°C	+230.0	(i)
(complexed with ether)			
$\bigcap_{H \text{ of } C_{R^2}}^{R^1} \longrightarrow \bigcap_{H \text{ of } C_{R^2}}^{N}$	r ² in CHCl ₃		(j)
R ¹ R ² H CCl ₃ (75% NH-tautome CN OEt (98% NH-tautome	r) r)	+ 198 + 225	
tautomer H. C. Ph	in CHCl ₃ (80% NH)	+ 229	(j)
tautomer tautomer	in CHCl ₃ (15% NH)	+ 88	(j)
EIO OEI OCCCCO HNCNHO EIO COHOCO OHOCO in CHCl ₃ (100% NH)	+ 273	(j)	
N N N N N N N N N N N N N N N N N N N	in CHCl ₃ (0% NH ?)	+ 40	(m)

Table 4. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
N tautomer	in CHCl ₃		(m)
R CF ₃ Ph 4-OMe-phenyl 4-pyridyl	(91% NH ?) (70% NH ?) (85% NH ?) (50% NH ?)	+216 +196 +210 +177	
O H	in DMSO in CDCl ₃	+ 215.6 + 220.2	(k) (k)
O H	in DMSO in CDCl ₃	+ 239.5 + 240.0	(k) (k)
R-N C-N Ph	in CDCl ₃		(1)
R = Ph $R = 2-Br-phenyl$		+ 255.8 (NH) + 189.8 (NPh) + 87.5 (=N) + 253.4 (NH) + 189.8 (NPh) + 91.3 (=N)	
Me ₃ N C=C CN CN CN	in CDCl ₃		(n)

Table 4. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R OMe Me H Br NO ₂		(NMe ₃) + 271.6 + 271.2 + 269.8 + 268.8 + 266.4	
N.H.N.H.N. tautome	solid state	+ 238.5 (NH) + 92.5 (=N)	(o) (o)
imino tau	tomers		(p)
R¹ R²			
H H H CH ₂ CH ₂ NHCH ₂ CH ₂ OH OH CH ₂ CH ₂ OH OH CH ₂ CH ₂ NEt ₂ OH CH ₂ CH ₂ NHCH ₂ CH ₂ OH H Ph	in DMSO in DMSO in DMSO in CDCl ₃ in DMSO in DMSO, +27°C +97°C in CDCl ₃ , -33°C +57°C	+ 264.1 + 246.0 (enamine) + 244.5 + 249.7 (enamine) + 249.7 (enamine) + 200.2 + 189.1 + 227.8 + 202.8	
OH Ph	+ 57°C in CDCl ₃	+ 202.8 + 242.8	

⁽a) Data from ref. 1035, $8.1\,\mathrm{MHz}^{15}\mathrm{N}$ spectra, field perpendicular to sample tube, referred originally to $1\,\mathrm{M}$ HNO₃, $+6.2\,\mathrm{ppm}$ from neat nitromethane (Table 2), conversion scheme Ha (Table 1).

⁽b) Data from ref. 1036, 40.55 Mz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported originally vs fictitious ammonia standard taken at + 380.2 ppm from neat nitromethane, see comments in footnote (e).

- (c) Data from ref. 771, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (d) Data from ref. 1037, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referred to neat nitromethane, uncorrected for bulk susceptibility effects.
- (e) Data from ref. 193, $50.7 \,\mathrm{MHz}$ proton-coupled ¹⁵N spectra, field parallel to sample tube, referenced originally to ammonium nitrate and recalculated to fictitious ammonia standard taken at $+380.2 \,\mathrm{ppm}$ from neat nitromethane (the latter value refers actually to measurements where the field is perpendicular to sample tube), conversion scheme IVd (Table 1).
- (f) Data from ref. 1038, 25.32 MHz ¹⁵N DEPT spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects, but reported vs fictitious ammonia standard taken at +380.2 ppm from nitromethane (see comments in footnote (e)).
- (g) Data form ref. 1039, 7-15N label, 25.3 MHz 15N spectra, field parallel to sample tube, referenced originally to the nitrate ion in NH₄NO₃ in DMSO, +3.3 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (h) Data from ref. 802, 36.5 MHz ¹⁵N spectra, other details as in footnote (d).
- (i) Data from ref. 1040, 33% ¹⁵N label, 10.13 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to N-methylaniline, but reported vs liquid NH₃ (taken at + 52.8 ppm from the actual standard, and at + 380.2 ppm from neat nitromethane), conversion scheme IVa (Table 1).
- (j) Data from refs 551, 553, 784, 791 and 1041, 30.4 MHz ¹⁵N INEPT spectra, other details as in footnote (d).
- (k) Data from ref. 786, 36.4 MHz 15 N spectra (inverse-gated decoupled or DEPT), field parallel to sample tube, referenced originally to NO_3^- in aqueous NH_4NO_3 , +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); originally reported vs liquid ammonia, taken at +376.2 ppm from the standard employed.
- (1) Data from 548, 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
- (m) Data from refs 550, 552, and 1042, 21.68 MHz ¹⁴N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; it is not clear which of the nitrogen atoms was actually observed in the ¹⁴N spectra where signal broadening and overlap effects can take place; the estimates of the tautomeric compositions seem to be uncertain.
- (n) Data from ref. 816, ¹⁵N-labelled NMe₃ moiety, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected bulk susceptibility effects.
- (o) Data from ref. 432, 9.12 MHz ¹⁵N CPMAS spectra at −137 to +87°C, dynamic NMR effects observed in the solid; referenced originally to solid NH₄Cl, +341.0 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects.
- (p) Data from ref. 783, 10.09 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.

Table 5. Nitrogen shieldings in amino groups coordinated to boron and silicon

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Amine-borane adducts			
$H_3N \rightarrow BH_3$	in C ₆ D ₆ /THF	+ 373.0	(a)
$Et_3N \rightarrow BH_3$	in C_6D_6 , +60°C	+ 338.8	(a)
$Me_3N \rightarrow BF_3$	in CH ₂ Cl ₂	+ 345.8	(a)
$Me_3N \rightarrow BCl_3$	in CH ₂ Cl ₂	+ 337.8	(a)
$Me_3N \rightarrow BBr_3$	in CH ₂ Cl ₂	+ 340.8	(a)
$Me_3N \rightarrow BI_3$	in CH ₂ Cl ₂	+351.6	(a)
other structures	various	, 551.5	(b)
Boratranes			
$R - N \rightarrow B - Ph$	solvent ?		(c)
R			
H		+319.1	
Me		+313.8	
Et		+ 305.7	
i-Pr		+ 298.1	
n-Bu		+ 306.5	
i-Bu		+ 305.3	
t-Bu		+ 291.1	
Silatranes			
$ \begin{array}{c} & O \\ & O \\ & O \end{array} $			
R			
H	in DMSO	+ 352.1	(d)
11	in DMSO	+ 353.9	(e)
	in acetone-d ₆	+ 355.1	(e)
	in CDCl ₃	+ 355.9	(e)
F	in CH ₂ Cl ₂	+ 349.3	(f)
Cl	in DMSO	+ 347.8	(e)
	in CDCl ₃	+ 348.8	(e)
	in CH ₂ Cl ₂	+ 348.8	(f)
Br	in CH ₂ Cl ₂	+ 348.0	(f)
I.	in CH ₂ Cl ₂	+ 346.9	(f)
•		,	(-)

Table 5. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to nea nitromethane	t Notes
CH ₂ Cl	in DMSO	+ 351.5	(d)
	in DMSO	+ 353.2	(e)
	in CDCl ₃	+ 355.2	(e)
OMe	in DMSO	+ 352.3	(e)
	in CDCl ₃	+ 353.1	(e)
CH ₂ NHPh	in DMSO	+ 353.7	(d)
Ph	in DMSO	+ 354.1	(d)
	in DMSO	+ 355.0	(e)
	in CDCl ₃	+ 357.2	(e)
CH=CH ₂	in DMSO	+ 354.5	(d)
	in DMSO	+ 355.3	(e)
	in CDCl ₃	+ 357.9	(e)
Me	in DMSO	+ 355.9	(d)
	in DMSO	+ 357.0	(e)
	in CDCl ₃	+ 360.0	(e)
CH₂CH₂CH₂SH	in DMSO	+ 356.3	(d)
CH ₂ CH ₂ CH ₂ CN	in DMSO	+ 359.3	(d)
NH NH NH NH	in CDCl ₃		(g)
R		NSi NH	
		+346.8 + 350.1	
Me		+ 354.7 + 352.8	
CH=CH ₂		+352.8 + 354.0	
Ph		+ 352.2 + 354.1	
other silatranes and related structures	various		(h)

⁽a) Data from ref. 757, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 0.1 m nitromethane in CDCl₃, +3.8 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

⁽b) See ref. 5, p. 299, and references therein.

⁽c) Data from ref. 1043, 20.3 MHz and 36.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane via a calibrated sample of aqueous NaNO₃, uncorrected for bulk susceptibility effects, solvent not reported.

⁽d) Data from ref. 1044, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.

⁽e) Data from ref. 936, 36.5 MHz ¹⁵N spectra, other details as in footnote (d).

⁽f) Data from ref. 274, ¹H{¹⁵N} INDOR spectra, spectrometer not reported, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.

⁽g) Data from ref. 930, details as in footnote (e).

⁽h) See ref. 5, pp. 271-276, and references therein.

Table 6. Nitrogen shieldings in amino groups bound to elements other than carbon

						•.	1:11	
					Ni (n	itrogen pm) rei	shielding ferred to neat	
Com	pound	[Solution o	r state ni	trometl	nane	Notes
(Me ₂	N) ₃ P=	=X		in C ₆ D ₆				(a)
lone	nair				_	349.7		
Se	P					346.8		
Te						345.5		
NEt ₂ BH ₃						364.7 346.1		
———					+	340.1		
Me _N								
()P	-NR ₂			in C ₆ D ₆				(b)
R					N	Me	NR ₂	
Me						344.0	+ 324.1	
Et i-Pr						345.0	+ 292.8	
I-F1					+	352.1	+ 274.1	
R ¹	Me	R^3						
R ² / O	-N-P' ` O	R⁴		in benzene				(c)
R¹	R ²	\mathbb{R}^3	R ⁴ .					
Cl OEt	Cl Cl	Cl Cl	Cl Cl			+ 274.7 + 285.1		
OEt	Cl	OEt	Cl	diastereois	S +	- 296.9		
				diastereois	()	- 297.1 - 296.6		
OEt OEt	OEt OEt	Cl OEt	Cl Cl		+	- 310.2		
OEt	OEt	OEt	OEt		+	- 324.7		
R.	, ¹⁵ NMe ₂							
\mathcal{P}	\	Me		in MeCN		360.8 (IS NT	(d)
	┸╻┦			III WICCIN	+	300.0 (14)	(u)
-	0	NMe ₂						

Table 6. —contd.

Compour	nd	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
other P-b	ound amino groups		see Table 23 and ref. 5, pp. 277-283	
Me ₂ B-N	H_2	in C ₆ D ₆	+ 283.1	(e)
[Me ₂ B—N		in C_6D_6	+ 335.4	(e)
H ₂ N — B —	H	in C ₆ D ₆ / THF, +60°C	+ 354.5	(e)
B(NHMe)3	in C ₆ D ₆	+ 355.5	(e)
L_ _N (- NНМе	in C ₆ D ₆	+ 358.5 (NHMe)	(e)
Ph ₂ B—NHMe		in CDCl ₃	+ 289.5	(f)
R_2B-X		in C ₆ D ₆		(g)
X	R			
NH ₂	t-Bu		+ 302	
	<u>i-</u> Рг		+ 307	
	Et		+ 299	
	Me		+ 297	
NHMe	t-Bu		+ 297	
	i-Pr		+ 301	
	Et		+ 294	
	Me		+ 293	
NHPr ⁱ	t-Bu		+ 255	
	i-Pr		+ 262	
	Me		+ 263	
NHBu ^t	t-Bu		+ 249	
	i-Pr Me		+ 257	
	IVIC		+ 248	

Table 6. —contd.

Compour	nd	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
NHSiMe	t-Bu i-Pr Et Me		+ 286 + 291 + 292 + 286	
NHPh	t-Bu i-Pr Me		+ 260 + 267 + 259	
NMe ₂	t-Bu i-Pr Et Me		+ 300 + 296 + 306 + 300	
NEt ₂	i-Pr Et Me		+ 269 + 266 + 299	
R S N S N N N N N N N N N N N N N N N N	R ² Me	in CDCl ₃		(h)
\mathbb{R}^1	\mathbb{R}^2			
SiMe ₃ t-Bu t-Bu SiMe ₂ Cl Ph	SiMe ₃ SiMe ₃ t-Bu SiMe ₂ Cl SiMe ₂ Cl		+ 269.2 + 260 (unresolved) + 216.3 + 257.0 + 258 (unresolved)	
Me Me	SiMe ₃		+270 (unresolved)	
<u>г—</u> м(t-Bu		+280, +321	

Table 6. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
N(Pr ⁱ) ₂			
$B - N(Pr^i)_2$	in CDCl ₃	+255.2, +245.4	(i)
$ \begin{array}{c c} Me & X-X \\ NH-B & C=C \\ Me & Et \end{array} $	in CDCl ₃ X = S X = Se	+ 278 + 275	(j)
$(CF_3S)_2N-BX_2$	neat liquids $+10\% C_6D_6$		(k)
X F Cl Br N ₃ NHSCF ₃		+ 349 ± 2 + 309 + 299 + 335.2 + 346.6 (NH)	
$[(CF_3S)_2N]_2BX$	neat liquids + 10% C ₆ D ₆		(k)
CI Br N ₃ NHSCF ₃		+ 329.4 + 325.0 + 340.0 + 332.4 (NH)	
$[(CF_3S)_2N]_3B$	neat liquid + 10% C ₆ D ₆	+ 336.8	(k)
$(CF_3SNH)BCl_2$ $(CF_3SNH)_2BCl$ $(CF_3SNH)_3B$ $(CF_3S)_2NBCl_2 \cdot NMe_3$ $NHSCF_3$	50% in C ₆ D ₆ 50% in C ₆ D ₆ 50% in C ₆ D ₆ in CCl ₄ /C ₆ D ₆	+311 ± 5 +338 ± 5 +356.2 +330	(k) (k) (k) (k)
F ₃ CSHN B NHSCF ₃	in CDCl ₃	+ 309.0 (ring NH) + 351.4 (NHSCF ₃)	(k) (k)

Table 6. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
NHSCF ₃ N N N N N N N N N N N N N N N N N N	neat + 10% C ₆ D ₆	+ 310.4 (NHSCF ₃) + 183.4 (ring N)	(k) (k)
$(Pr^{i})_{2}N - B$ $(Pr^{i})_{2}N - B$ $N(Pr^{i})_{2}$ (2) (3)	50% in CDCl ₃	+ 243.2 (N-2, 3) + 252.3 (N-1)	(1) (1)
$B = N(Pr^{i})_{2}$	sat. in CDCl ₃	+ 222.3 (N-Pr ⁱ) + 68.1 (ring N)	(m) (m)
Et Se N But	in CDCl ₃	+ 238.2	(n)
$E_{l} = S_{c} = S_{b} = S_{b}$	in CDCl ₃	+ 237.2	(n)
$E_1 \longrightarrow B \longrightarrow N $ $E_1 \longrightarrow Se \longrightarrow N (SiMe_3)_2$	in CDCl ₃	+ 244.7 (B-N-Se) + 316.3 (N-Si)	(n) (n)
other amino groups bound to b	ooron	see Table 5 and ref. 5, pp. 272, 285	
H ₂ NSiMePh ₂ H ₂ NSi(Bu ¹)Me ₂ H ₂ NSi(Me ₂)CMe ₂ CHMe ₂ HN(SiMe ₃) ₂ HN(SiMe ₂ Ph) ₂ HN(SiMePh ₂) ₂ Me ₃ SiNHSi(Bu ¹)Me ₂ Me ₃ SiNHSi(Me ₂)CMe ₂ CHMe ₂	in C ₆ D ₆ in C ₆ D ₆ in C ₆ D ₆ in acetone-d ₆ 50% in CDCl ₃ 50% in CDCl ₃ in C ₆ D ₆ in C ₆ D ₆	+ 373.8 + 375.7 + 371.8 + 354.2 + 357.8 + 361.5 + 360.0 + 356.5	(o) (q) (q) (p) (o) (o) (q) (q)

Table 6. —contd.

		Nitrogen shielding	
		(ppm) referred to neat	
Compound	Solution or state	nitromethane	Notes
HN(SiMe ₂ Cl) ₂	50% in CDCl ₃	+ 334.3	(o)
$HN(SiMe_2CI)_2$ $Me_3Si-[O-SiMe_2-]_6-NH-$	$-[-SiMe_2-O-]_6-$	-SiMe ₃	
	in CDCl ₃	+ 335.7	(o)
\bigcap			
NHSiMe ₃	in C ₆ D ₆	+318.4	(q)
Me ₂ C(Et)NHSiMe ₃	in C ₆ D ₆	+ 327.7	(q)
Bu'NHSiHMe ₂	in C_6D_6	+ 326.3	(q)
Bu'NHSiMe ₃	50% in CDCl ₃	+ 323.9	(p)
,	in C ₆ D ₆	+ 325.0	(r)
Bu ^t NHSiEt ₃	in C_6D_6	+ 331.2	(q)
Bu ^t NHSiMe ₂ Ph	50% in CDCl ₃	+ 325.7	(p)
Bu ^t NHSiMePh ₂	50% in CDCl ₃	+ 327.3	(p)
(Bu ^t NH) ₂ SiMe ₂	50% in CDCl ₃	+ 317.4	(p)
(Bu ^t NH) ₂ SiHMe	in C_6D_6	+317.3	(q)
(Bu ^t NH) ₂ Si(Me)Ph	in C_6D_6	+ 317.5	(q)
$(Bu^{1}NH)_{2}Si(Me)CH=CH_{2}$	in C_6D_6	+ 315.8	(q)
$(Bu^{t}NH)_{2}Si$	in C_6D_6	+ 312.4	(q)
(Bu ^t NH) ₂ Si	in C ₆ D ₆	+ 317.1	(q)
Bu ^t NHSi(OEt)Me ₂	50% in CDCl ₃	+317.6	(p)
Bu ^t NHSi(OEt) ₂ Me	50% in CDCl ₃	+ 321.5	(p)
$(Bu^t NH)_2 Si(OEt)_2$	50% in CDCl ₃	+ 324.9	(p)
Bu ^t NHSi(OEt) ₃	50% in CDCl ₃	+ 330.4	(p)
Bu'CH ₂ CMe ₂ NHSiMe ₃	in C_6D_6	+ 321.7	(r)
Bu ^t NHSiMe ₂ Pr ⁱ	in C_6D_6	+ 326.9	(q)
CI		. 212.7	(-)
Bu ^t NHSi	in C_6D_6	+ 313.7	(q)
Pr ⁱ NHSiMe ₂ Pr ⁱ	in C ₆ D ₆	+337.1	(q)
PriNHSi(Bui)Me2	in C_6D_6	+338.3	(\widetilde{q})
Pr'NHSi(Me ₂)CMe ₂ CHMe ₂	in C_6D_6	+ 336.2	(q)
Pr ⁱ NHSi(Ph)Me ₂	in C_6D_6	+ 334.5	(q)
Pr NHCH ₂ CMe ₂ NHSiMe ₃	in C_6D_6	+ 330.1 (NHPr ³)	(q)
		$+326.5 (NHCMe_2)$	(q)
(Pr'NH) ₂ SiMe ₂	in C_6D_6	+ 325.1	(q)
(Pr ⁱ NH) ₂ Si(Me)Ph	in C_6D_6	+ 329.1	(q)
$(Pr^{1}NH)_{2}Si(Me)CH=CH_{2}$	in C_6D_6	+ 329.1	(q)

Table 6. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Pr ⁱ NH)₂Si♦	in C ₆ D ₆	+ 325.1	(q)
<u>·</u>		, 22212	
Pr ⁱ NH) ₂ Si	in C_6D_6	+ 330.5	(q)
Bu ^s NHSiMe ₃	in C_6D_6	+ 337.2	(r)
Bu ⁱ NHSiMe ₃	in C_6D_6	+ 356.9	(r)
$(PrNH)_2SiMe_2$	50% in CDCl ₃	+ 351.0	(s)
PrNHSi(OEt)Me ₂	50% in CDCl ₃	+ 348.9	(s)
(PrNH) ₃ SiMe	50% in CDCl ₃	+ 351.6	(s)
(PrNH) ₃ SiCH=CH ₂	50% in CDCl ₃	+ 353.6	(s)
(PrNH) ₂ SiPh	50% in CDCl ₃	+ 353.5	(s)
(PrNH) ₄ Si	50% in CDCl ₃	+ 354.4	(s)
Et ₂ NSi(OEt) ₃	in C_6D_6	+ 349.9	(s)
EtNHSiMe ₃	in C_6D_6	+ 349.3	(r)
EtNHSi(Bu ^t)Me ₂	in C_6D_6	+ 354.8	(q)
EtNHSi(Me ₂)CMe ₂ CHMe ₂	in $C_6 D_6$	+ 352.3	(q)
EtNHSi(Ph)Me ₂	in $C_6 D_6$	+351.5	(q)
Me ₃ SiNHCH ₂ CH ₂ NHSiMe ₃	in C_6D_6	+ 358.9	(q)
Me ₃ SiNHCH(Me)CH ₂	in C_6D_6	+ 341.4 (NHCHMe)	(q)
NHSiMe ₃		+ 359.4 (NHCH ₂)	(q)
Me ₃ SiNHCMe ₂ CH ₂ NHSiMe ₃	in C_6D_6	+363.2 (NHCH ₂)	(q)
, 2	0-0	+ 334.5 (NHCMe ₂)	(q)
Bu ^t (Me ₂)SiNHCH ₂ CH ₂ NHSi(Me ₂)Bu ^t	in C_6D_6	+ 364.3	(q)
PhCH(Me)NHSiMe ₃	in C_6D_6	+ 335.9	(q)
PhNHSiMe ₃	in acetone-d ₆	+ 314.9	(p)
PhNHSiHMe,	50% in CDCl ₃	+ 320.4	(p)
PhNHSiMe ₂ Ph	50% in CDCl ₃	+ 317.7	(p)
PhNHSiMePh ₂	50% in CDCl ₃	+ 319.5	(p)
(PhNH) ₂ SiMe ₂	in acetone-d ₆	+ 312.7	(p)
PhNHSi(OEt)Me ₂	50% in CDCl ₃	+ 310.8	(p)
(PhNH) ₃ SiMe	50% in CDCl ₃	+ 313.1	(p)
(PhNH) ₂ Si(OEt)Me	50% in CDCl ₃	+ 313.5	(p)
PhNHSi(OEt), Me	50% in CDCl ₃	+ 314.6	(p)
$(PhNH)_2Si(\tilde{O}Et)_2$	50% in CDCl ₃	+ 319.2	(p)
PhNHSi(OEt) ₃	50% in CDCl ₃	+ 322.3	(p)
I III VII SI(OLU)3	in cyclohexane	+ 321.5	(p)
	in DMSO	+ 320.7	(p)
NHSiMe ₃	in C ₆ D ₆	+ 316.9	(p)
Me Me			
NHSiMe ₃	in C_6D_6	+ 328.4	(q)

Table 6. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me ₂ CISi—N SiMe ₂ SiMe ₂	in CDCl ₃	+ 322.1	(0)
$\begin{array}{l} \text{H}_{2}\text{NSiMe}_{2} - \text{N} \underbrace{\begin{array}{c} \text{SiMe}_{2} \\ \text{N} - \text{SiMe}_{2} \end{array}} \\ \text{SiMe}_{2} \end{array}$	in CDCl ₃	+ 323.8 (N) + 363.1 (NH ₂)	(o) (o)
$EtOSiMe_2 - N \underbrace{\begin{array}{c} SiMe_2 \\ N - SiMe_2 \\ SiMe_2 \end{array}}$	in CDCl ₃	+ 325.4	(o)
SiR ₂ HN NH Me ₂ Si SiMe ₂ NH	in CDCl ₃ $R = Me$ $R = Ph$	+ 347.3 + 347.6, + 351.0	(o) (o)
HN NH Me ₂ Si SiMe ₂	in CDCl ₃	+ 345.4	(t)
Si Me ₂ O Me ₂ Si Si Me ₂ NH	in CDCl ₃	+ 342.9	(t)
Si Ph ₂ O Me ₂ Si Si Me ₂	in CDCl ₃	+ 341.9	(t)
$\begin{array}{c c} \text{Me}_2\text{Si} \longrightarrow \text{NH} \longrightarrow \text{SiMe}_2 \\ \downarrow & \downarrow \\ \text{HN} & \text{NH} \\ \downarrow & \downarrow \\ \text{Me}_2\text{Si} \longrightarrow \text{NH} \longrightarrow \text{SiMe}_2 \end{array}$	in CDCl ₃	+ 341.7	(o)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	in CDCl ₃	+ 334.9	(t)

Table 6. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
$\begin{array}{c c} Me_2Si \longrightarrow NH \longrightarrow SiMe_2 \\ & & \\ O & O \\ & & \\ Me_2Si \longrightarrow O \longrightarrow SiMe_2 \end{array}$	in CDCl ₃	+ 334.9	(t)
$\begin{array}{cccc} O - SiMe_2 - O - SiMe_2 \\ I & I \\ Me_2Si & NH \\ I & O - SiMe_2 - NH - SiMe_2 \end{array}$	in CDCl ₃	+ 336.7	(t)
$\begin{array}{ccc} O - SiMe_2 - NH - SiMe_2 \\ \downarrow & \downarrow \\ Me_2Si & O \\ \downarrow & \downarrow \\ O - SiMe_2 - NH - SiMe_2 \end{array}$	in CDCl ₃	+ 335.1	(t)
Me ₂ S—O—SiMe ₂ —NH HN SiMe ₂ Me ₂ Si O O—SiMe ₂ —NH—SiMe ₂	in CDCl ₃	+ 334.8	(t)
Me ₃ SiNHCH ₂ CH ₂ NHSiMe ₃	in C ₆ D ₆	+ 358.8	(r)
N SiMe 3	in CDCl ₃	+ 317.1 (N—Si) + 74.8 (—N—)	(u) (u)
N Si Me 2CI	in CDCl ₃	+ 308.6 (N—Si) + 38.9 (—N=)	(u) (u)
N(SiMe ₃) ₃	C_6D_6	+ 345.8	(r)
Me ₂ Si —— SiMe ₂ 	in C ₆ D ₆		(r)

Table 6. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R			
Me Et Bu' Pr' Bu' Bu' Bu'CH ₂ CMe ₂ SiMe ₃ Si(Me ₂)Bu'		+ 378.4 + 354.3 + 362.0 + 337.4 + 342.0 + 326.9 + 326.5 + 359.4 + 367.3	(p)
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	in C ₆ D ₆		(q)
R Bu¹ Pr¹ Bus		+314.4 +325.1 {+328.3, +328.4, +328.5, +328.8, +328.9, +329.0	
$\begin{array}{c} \text{Me}_2\text{Si} \longrightarrow \text{NH} \longrightarrow \text{SiMe}_2 \\ \downarrow \\ \text{Me}_2\text{Si} \longrightarrow \text{NH} \longrightarrow \text{SiMe}_2 \end{array}$	in C ₆ D ₆	+ 360.2	(r)
Bu ^t ₂ PNHSiMe ₃	in C ₆ D ₆	+ 360.9	(q)
other Si-bound amino groups		see Table 5 and ref. 5, pp. 271, 273-276, 284	
Me ₂ Si NBu ^t	in C ₆ D ₆	+ 200.1	(v)
NBu ^t Me ₂ Si SnMe ₂ NBu ^t	in C ₆ D ₆	+ 314.4 (*)	(v)
Me ₂ Si NBu ^t NBu ^t	in C ₆ D ₆	+ 272.0 (*)	(v)

Table 6. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
NBu ^t NBu ^t NBu ^t SiMe ₂ NBu ^t NBu ^t	in C ₆ D ₆	+ 295.0	(v)
Me_2Si Sn NBu^t $SiMe_2$	in C_6D_6	+ 271.4	(v)
NBu ^t SnMe ₂ NBu ^t	in C ₆ D ₆ 50% in C ₆ D ₆	+ 310.4 + 310.7	(v) (w)
NCMe ₂ CH ₂ Bu ^l Et ₂ Sn SnEt ₂ NCMe ₂ CH ₂ Bu ^l	in C_6D_6	+ 313.8	(v)
Me ₂ Si NBu ^t Sn Me ₂ Si NBu ^t	in C_6D_6	+ 192.9	(v)
Me ₂ Si NR SnMc ₂ Me ₂ Si NR	in C_6D_6		
Bu¹ Pr¹ Bu¹CH ₂ CMe ₂		+ 317.8 + 336.3 + 316.0	(v) (w) (w)
Me ₂ Si NBu ^t Me ₂ Si SnCl ₂ Me ₂ Si NBu ^t	in C ₆ D ₆	+ 300.8	(v)
Me ₃ SiN(Bu ^t)SnMe ₃ Me ₃ SiN(SnMe ₃) ₂	in C_6D_6 in C_6D_6	+ 324.1 + 374.4	(w) (w)

Table 6. —cont.

Table 0. Com.		Nitrogen shielding (ppm) referred to neat	_
Compound	Solution or state	nitromethane	Notes
N(SnMe ₃) ₃	in C ₆ D ₆	+ 396.0	(x)
$Me_2Sn(NEt_2)_2$	in C_6D_6	+ 341.1	(w)
$Me_2Sn[N(Me)Ph]_2$	in C_6D_6	+ 322.7	(w)
Me ₃ SnNHBu ^t	in C_6D_6	+ 329.0	(w)
Me ₃ SnNHPh	in C_6D_6	+ 326.7	(w)
(Et ₃ Sn) ₂ NH	in C_6D_6	+414.7	(w)
Me ₃ SnNEt ₂	in C_6D_6	+ 330.1	(w)
Me ₃ SnN(Me)Ph	in C_6D_6	+ 329.9	(w)
(Me ₃ Sn) ₂ NMe	in C_6D_6	+ 362.0	(w)
$(Me_3Sn)_2NPr^i$	in C_6D_6	+ 347.6	(w)
$(Me_3Sn)_2NBu^t$	in C_6D_6	+ 330.5	(w)
$(Me_3Sn)_2NPh$	$\operatorname{in} C_6 D_6$	+ 332.7	(w)
$(Me_3Sn)_2NGeMe_3$	in C_6D_6	+ 380.5	(w)
$Sn[N(SiMe_3)_2]_2$	in C_6D_6	+ 243.0	(x)
$Sn[N(Bu^i)SiMe_3]_2$	in C_6D_6	+ 227.7	(x)
$Sn[N(Bu')SiMe_3]_2$	in C_6D_6	+ 224.7	(y)
$Bu^t N(SnMe_3)_2$	in C_6D_6	+ 330.5	(x)
Me Me Me Me Me Me Me Me Me	in C ₆ D ₆	+ 205.4	(y)
BEt ₂ NHMe	in C ₆ D ₆	+ 363.8	(w)
other Sn-bound amino groups	i	see ref. 5, p. 284	
$Pb[N(SiMe_3)_2]_2$	in C_6D_6	+ 192.9	(x)
Pb[N(Bu ^t)SiMe ₃] ₂	in C_6D_6	+ 144.7	(y)
Pb[N(SiMe ₃)CMe ₂ CH ₂ Bu ^t] ₂	in C_6D_6	+ 151.4	(y)
NBu ^t Me ₂ Si Pb NBu ^t	in C ₆ D ₆	+ 187.1	(x)
Me ₂ Si NBu ^t Pb Me ₂ Si NBu ^t	in C ₆ D ₆	+ 119.8	(x)
(Me ₃ Pb) ₃ N	in C ₆ D ₆	+ 354.1	(x)

Table 6. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
ON-Se-NO2	in CDCl ₃	+ 335.2 (N—Se) + 10.1 (NO ₂)	(z) (z)
O $N-Sc$ NO_2	in CDCl ₃	+ 337.6 (N—Se) + 9.9 (NO ₂	(z) (z)
N(SCF ₃) ₃	neat + 10% C ₆ D ₆	+ 364.0	(A)
HN(SCF ₃) ₂	neat + 10% C ₆ D ₆ same + Cr(acac) ₃ gel in CH ₂ Br ₂	+ 375.8 + 376.0	(A) (A) (A)
H ₂ N—SCF ₃	gel in MeOH neat + 10% C ₆ D ₆	+ 370.0 + 381.1	(A) (A)
$(CF_3S)_2NMe$	neat + 10% C ₆ D ₆	+ 372.8	(A)
CF ₃ SNHSiMe ₃	neat + 10% C ₆ D ₆	+ 376.1	(A)
CF ₃ SN(SiMe ₃) ₂	neat + 19% C_6D_6 neat + 10% C_6D_6	+ 309.2	(A) (A)
$(CF_3S)_2NSiMe_3$ $(CF_3S)_2NSnMe_3$	$\frac{10\% C_6 D_6}{10\% C_6 D_6}$		(A) (A)
$[(CF_3S)_2N]_2Hg$	neat + 10% C ₆ D ₆	+361 + 5	(A)
[(Me3Si)2N]2Ge(OMe)	in CDCl ₃	+ 332 (NH)	(B)
NHSi(OBu ^t) ₃		+335 (N)	(B)
THF Ph Li Ph Ph THF	0.05 м in toluene + 0.05 м ТНF, - 90°С	+ 251.4	(C)
THF Ph Li N Br Ph Li THF THF	0.05 м in toluene + 0.1 м ТНF, - 90°С	+ 251.0	(C)

Table 6. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
$(THF)_{n}$ $Pr^{i} \qquad Li \qquad Pr^{i}$ $Li \qquad (THF)_{n}$	0.20 м in toluene + 0.41 м ТНF – 40°С	+ 308.9	(D)
$ \begin{array}{c c} (THF)_n \\ \downarrow \\ Pr^i \\ \downarrow Li \\ N \\ \downarrow Li \\ Pr^i \\ \uparrow \\ (THF)_n \end{array} $			
R_NHLi	in THF		(E)
R none 2-Me 3-Me 4-Me 2-OMe 3-OMe 4-OMe 2,6-Me ₂		+ 286.2 + 289.6 + 287.5 + 291.3 + 299.2 + 285.2 + 297.9 + 290.7	

⁽a) Data from ref. 129, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 0.1 m nitromethane on CHCl₃, +3.8 ppm fron neat nitromethane (Table 2), conversion scheme IIb (Table 1).

⁽b) Data from ref. 903, 18.24 MHz ¹⁵N spectra field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.

⁽c) Data from ref. 905, ¹⁵N-labelled samples, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.

⁽d) Data from ref. 907, ¹⁵N label, 30.4 MHz ¹⁵N spectra, other details as in footnote (b).

⁽e) Data from ref. 757, INEPT spectra, other details as in footnote (a).

⁽f) Data from ref. 120, details as in footnote (e).

⁽g) Data from ref. 1045, 14.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to aqueous NaNO₃, + 3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

- (h) Data from ref. 1046, 5.8 MHz ¹⁴N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (i) Data from ref. 1047, 25.4 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (i) Data from ref. 1048, 25.4 MHz ¹⁵N spectra, details as in footnote (i).
- (k) Data from ref. 788, 25.36 and 40.52 MHz ¹⁵N spectra, and 18.07 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to liquid NH₃ + 10% C_6D_6 , and also to NO₃⁻ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (l) Data from ref. 1049, 25.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added to the sample as a relaxation reagent.
 - (m) Data from ref. 135, details as in footnote (i).
- (n) Data from ref. 1050, 25.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (o) Data from refs 150 and 899, details as in footnote (p).
- (p) Data from ref. 51, 36.5 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (q) Data from ref. 1024, details as in footnote (a), but originally recalculated to neat nitromethane reference, uncorrected for bulk susceptibility effects.
 - (r) Data from ref. 134, 30-50% solutions, INEPT spectra, other details as in footnote (a).
- (s) Data from ref. 154, details as in footnote (p); the paper contains a value for N(SiMe₃)₃ quoted from ref. 130, which is erroneously mixed together with those referred to neat nitromethane; actually, the quoted value was measured with respect to 0.1 m nitromethane in CDCl₃, + 3.8 ppm from neat nitromethane, see footnotes (a) and (x).
 - (t) Data from ref. 150, details as in footnote (p).
- (u) Data from ref. 1051, 10.14 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to NO₃ in aqueous ND₄NO₃, + 40 ppm fron neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (v) Data from refs. 941 and 943, 10.14 MHz ¹⁵N spectra, field perpendicular to sample tube, other details as in footnote (a); some of the values have been misprinted in the paper, and the correct ones, those marked with (*), are reported here, owing to the authors' advice.
 - (w) Data from ref. 134, INEPT spectra, other details as in footnote (a).
- (x) Data from refs. 130, 151 and 931, details as in footnote (a); the value reported in the second reference for Pb[N(SiMe₃)₂]₂ corrects that misprinted in the first.
 - (y) Data from ref. 153, 10-20% solutions, details as in footnote (a).
- (z) Data from ref. 1052, 40.56 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (A) Data from ref. 776, details as in footnote (k).
- (B) Data from ref. 795, 25.3 MHz ¹⁵N spectrum, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (C) Data from ref. 1053, 40.53 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 0.15 M aniline in THF (tetrahydrofuran), and recalculated to fictitious ammonia standard, taken at +50.0 ppm from the reference employed, and +380.2 ppm (uncorrected) from neat nitromethane, conversion scheme IVd (Table 1).
 - (D) Data from ref. 949, details as in footnote (C).
- (E) Data from ref. 775, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to nitromethane, uncorrected for bulk susceptibility effects; reported originally vs. fictitious ammonia standard taken at +380.2 ppm from nitromethane; the latter value (uncorrected for bulk susceptibility effects) comes form measurements where the field was perpendicular to sample tube (see Table 2).

Table 7. Nitrogen shieldings in arylamines and arylammonium ions

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
	30.41.01.01.01		
R I			
NH ₂			
\			
R			
none	in THF	+ 328.1	(a)
	in aqueous MeCN	+ 325.7	(b)
	in acetone	+ 325.6	(c)
	in DMSO	+ 320.0	(d)
	in DMSO	+ 320.8	(e)
	in DMSO	+ 320.1	(f)
3-NH ₂	in aqueous MeCN	+ 324.2	(b)
4-OH	in DMSO	+ 325.9	(d)
2-OMe	in THF	+ 338.5	(a)
	in DMSO	+ 330.3	(g)
3-OMe	in THF	+ 327.6	(a)
4-OMe	in THF	+ 333.6	(a)
	in acetone	+ 330.7	(c)
	in DMSO	+ 324.8	(d)
	in DMSO	+ 326.2	(e)
2-Me	in THF	+ 330.1	(a)
	in DMSO	+ 321.2	(g)
3-Me	in THF	+ 328.7	(a)
4-Me	in THF	+ 330.8	(a)
	in acetone	+ 327.7	(c)
	in DMSO	+ 321.6	(d)
2634	in DMSO	+ 323.0	(e)
2,6-Me ₂	in THF	+ 332.7	(a)
2-Et	in DMSO	+ 322.4 + 322.6	(g)
2-Pr ⁱ	in DMSO in DMSO	+ 322.6 + 331.2	(g)
2-F 4-F	in acetone	+ 328.5	(g)
4-r	in DMSO	+ 323.4	(c) (d)
	in DMSO	+ 323.6	(e)
2-C1	in DMSO	+ 320.0	(g)
4-Cl	in acetone	+ 325.3	(c)
4-61	in DMSO	+318.7	(d)
	in DMSO	+ 320.7	(e)
4-Br	in DMSO	+318.2	(d)
4-(PhCH ₂ CONH)	in DMSO	+318.0	(d)
4-CF ₃	in acetone	+319.9	(c)
·)	in DMSO	+313.5	(e)
4-SCF ₃	in acetone	+319.0	(c)
•	in DMSO	+313.0	(e)

Table 7. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
2-CONH ₂	in DMSO	+ 313.4	(g)
4-COOEt	in acetone	+317.2	(c)
+-COOL(in DMSO	+310.1	(e)
4-COOMe	in acetone	+316.9	(c)
+-COOME	in DMSO	+309.7	(e)
4-SO ₂ Me	in acetone	+315.8	(c)
+30 ₂ wie	in DMSO	+ 309.0	(e)
2-COMe	in DMSO	+ 307.4	(g)
4-COMe	in acetone	+316.1	(c)
+ COME	in DMSO	+ 307.9	(d)
	in DMSO	+ 308.8	(e)
2-CN	in DMSO	+310.5	(g)
4-CN	in acetone	+ 314.9	(c)
	in DMSO	+ 306.8	(d)
	in DMSO	+ 307.6	(e)
2-NO ₂	in DMSO	+301.3	(g)
2	in DMSO	+ 302.4	(e)
4-NO ₂	in acetone	+310.2	(c)
11102	in DMSO	+ 299.8	(d)
	in DMSO	+ 301.3	(e)
4-SO ₂ CF ₃	in DMSO	+ 299.2	(e)
$R \longrightarrow NO_2$ NH_2	in DMSO		(e)
R H		+ 302.4	
OMe		+ 305.2	
Me		+ 304.5	
F		+ 303.6	
Cl		+ 300.5	
CF ₃		+ 295.5	
SCF ₃		+ 294.8	
COOEt		+ 293.7	
COOMe		+ 293.4	
COMe		+ 292.5	
SO ₂ Me		+ 292.0	
CN		+291.2	
NO ₂		+ 286.6	
NO ₂			
NH ₂	in DMSO		(b)

Table 7. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R			
H OMe Me F		+ 302.4 + 299.8 + 302.4 + 299.2	
CF ₃ COOEt COMe SO ₂ Me NO ₂		+ 299.3 + 301.0 + 300.8 + 298.4 + 297.6	
PhNH ₃ ⁺	various	+329 to +333	(h)
H ₂ N—CH ₂ —C	-NH ₂		
	in DMSO solid state	+ 330 + 326	(i) (i)
NH ₂ groups in oxazole and pyrazole derivatives	in DMSO and CF ₃ COOH	+378 to +341	(j)
NH ₂ groups in 2-aminothiazole derivatives	in DMSO and CF ₃ COOH	+307 to +291	(k)
NH ₂ and NH groups in thiazole derivatives	in DMSO	+ 320 to + 292	(1)
NH ₂ groups in 5-amino- 1,2,4-triazole derivatives	in DMSO	+ 334 to + 327	(m)
NH ₂	in DMSO	+318.7	(f)
NH group in 8-(N-fluoren-2-ylamino)- -2'-deoxyguanosine -5'-monophosphate	in DMSO	+ 295.9	(f)
O ₂ S N R	in DMSO	$+284 \text{ to } +280 \text{ (NH}_2)$	(n)

Table 7. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
NHMe			
R			
4-(PhCH ₂ CONH) 2-NO-4-NO ₂ 2-NO-4,6-(NO ₂) ₂	in DMSO in DMSO in CDCl ₃	+ 324.2 (NHMe) + 297.0 (NHMe) + 290.1 (NHMe)	(d) (o) (p)
N HN	sat. in CDCl ₃	+ 321.6 (NH) + 84.1 (N)	(q) (q)
PhNHCH ₂ CHOHCH ₂ OPh	in aqueous MeCN	+ 328.1	(b)
Ph ₂ NH	in DMSO	+ 288.5	(f)
$ \left[O_2 N - \left[O_2 N - \left[O_2 N - O_2 N + O_$	in DMSO	+ 276.4	(f)
PhNMe ₂	in DMSO	+ 338.2	(r)
+	in CF ₃ COOH	+ 332.5	(r)
PhNHMe ₂ Cl	in DMSO	+ 328.9	(r)
_, +,	in CF ₃ COOH	+331.1	(r)
PhNMe ₃ I	in DMSO in CF ₃ COOH	+ 322.5 + 325.0	(r)
H_2N NMe_2	in DMSO	+ 342.7 (NMe ₂)	(s)
	'- and	+ 329.1 (NH ₂)	(s)
	in CDCl ₃	+ 342.6 (NMe ₂) + 331.4 (NH ₂)	(s) (s)
		+ 331.4 (Nn ₂)	(8)
PhCH ₂ CONH NMe ₂	in DMSO	+ 337.9 (NMe ₂)	(d)
Me ₂ N NMe ₂	in CD ₃ CN	+ 338.1	(t)
	solid state	+ 329.7	(t) (t)
		• •	(-)

Table 7. —contd.

Compound			Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me ₂ N + NMe ₂			in CD₃CN solid state	+ 343.7 + 340.0	(t) (t)
$N-N$ $C-NMe_2$!		in DMSO	+ 343.3 (NMe ₂)	(u)
NHR NHR			in DMSO (ca. 100% amino	tautomer)	(v)
$\frac{R}{Bu^n}$ MeOCH ₂ CH ₂				+ 292.0 (NH) + 295.9 (NH)	
\sim CH ₂				+ 293.3 (NH)	
<i>p</i> -tolyl				+ 278.7 (NH)	
NHR N + N R 1			in DMSO		(w)
R	\mathbb{R}^1	x			
Bu ⁿ MeOCH ₂ CH ₂ p-tolyl p-tolyl	Pr ⁿ Pr ⁿ Pr ⁿ	I I I Br		+ 269.3 (NH) + 272.6 (NH) + 261.4 (NH) + 259.4 (NH)	
<i>p</i> -tolyl	Pr ⁿ	Me ——	SO ₃	+ 261.1 (NH)	
<i>p</i> -tolyl	Me	MeSO ₃		+ 269.1 (NH)	
<i>p</i> -tolyl	Me	Me ——	so,	+ 261.4 (NH)	

Table 7. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Arylamino groups in resin from diglycidyl ether of bisphenol A (DGEBA) and m-phenylenediamine	in aqueous MeCN	+ 323.8 + 323.0 + 322.9 + 322.8 + 322.6 + 322.6 + 322.6 + 322.6 + 321.7 + 321.3	(b) (b) (b) (b) (b) (b) (b) (c)
Arylamino groups in trimethoprim, free and enzyme-bound	in H ₂ O	+ 290 to + 295	(x)
$ \begin{array}{c c} R^1 & O & H & R^2 \\ \hline R^1 & O & H & R^2 \end{array} $			(y)
R¹ R² H H H CH₂CH₂NHCH₂CH₂OH OH CH₂CH₂NEt₂ OH CH₂CH₂NHCH₂CH₂OH H Ph OH Ph	in DMSO in DMSO in CDCl ₃ in CDCl ₃ in DMSO, +27°C +97°C in CDCl ₃ , -33°C +27°C in DMSO, +27°C +97°C in CDCl ₃ , +27°C +57°C	+ 297.6 + 291.8 (arylamine) + 287.9 (arylamine) + 287.9 (arylamine) + 278.3 + 278.6 + 277.1 + 278.4 + 272.7 + 272.9 + 274.5 + 275.2	
NH groups in polyaniline	solid state	+ 302 to + 294	(z)

⁽a) Data from ref. 775, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; originally reported vs fictitious ammonia standard taken at +380.2 ppm from neat nitromethane (actually, the latter value was measured under conditions where the field was perpendicular to sample tube, Table 2). The corresponding lithium derivatives, —NHLi, are presented in Table 6.

Table 7. —contd.

- (b) Data from ref. 131, 25.34 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to liquid ammonia via a calibrated sample of HNO₃, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (c) Data from ref. 711, details as in footnote (e).
- (d) Data from ref. 1054, ca. 2 M solutions, 9.04 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to aqueous NH₄NO₃ and converted to liquid NH₃ standard taken at + 380.2 ppm from neat nitromethane, conversion scheme IVa (Table 1).
- (e) Data from ref. 1055, 1.7 M solutions, 10.1 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat formamide, +267.8 ppm from neat nitromethane (uncorrected, see Table 2), conversion scheme IVa (Table 1).
- (f) Data from ref. 693, $50.7 \,\text{MHz}^{15} \,\text{N}$ spectra, field parallel to sample tube, referenced originally to saturated aqueous NaNO₃, $+3.7 \,\text{ppm}$ from neat nitromethane (Table 2), conversion scheme IIb (Table 1); originally reported vs fictitious ammonia standard taken at $+376.5 \,\text{ppm}$ from the reference employed or $+380.2 \,\text{ppm}$ from neat nitromethane, see comments in footnote (a); we retrieved the original data and converted them as indicated above.
 - (g) Data from ref. 1056, details as in footnote (d).
 - (h) See ref. 5, p. 311, and references therein.
- (i) Data from ref. 1057, 50.7 MHz ¹⁵N solution spectra, field parallel to sample tube, and 20.3 MHz ¹⁵N CPMAS spectra, referenced to liquid NH₃, + 381.9 ppm fron neat nitromethane (Table 2), conversion scheme II (Table 1).
 - (j) Data from ref. 1058, see Table 17, footnote (x).
 - (k) Data from ref. 805, see Table 17, footnote (dd).
 - (1) Data from ref. 1059, see Table 17, footnote (cc).
 - (m) Data from ref. 1060, see Table 17, footnote (T).
 - (n) Data from ref. 1061, see Table 20, footnote (b).
- (o) Data from ref. 1062, ¹⁵N-labelled amino group, 10.09 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (p) Data from ref. 360, details as in footnote (o).
- (q) Data from ref. 1051, 10.14 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to NO₃⁻ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
 - (r) Data from ref. 142, 20.28 MHz ¹⁵N INEPT spectra, other details as in footnote (a).
- (s) Data from ref. 904, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane via a calibrated sample of aqueous KNO₃, uncorrected for bulk susceptibility effects; reported originally vs fictitious ammonia standard taken at +380.2 ppm from neat nitromethane, see comments in footnote (a).
- (t) Data from ref. 356, 50.7 MHz solution ¹⁵N spectra, field parallel to sample tube, and 27.3 MHz ¹⁵N CPMAS spectra, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; the genenion in the case of the cation was the tetrazolate anion.
- (u) Data from ref. 1034, 30.5 MHz ¹⁵N spectra, field parallel to sample tube, calibration as in footnote (q), conversion scheme IIb (Table 1).
- (v) Data from ref. 1063, 36.51 MHz proton-coupled ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
 - (w) Data from ref. 1064, details as in footnote (v).
 - (x) Data from ref. 94, see Table 19, footnote (w).
 - (v) Data from ref. 783, 15 N-labelled arylamino group, details as in footnote (o).
 - (z) Data from ref. 376, see Table 24, footnote (w).

Table 8. Nitrogen shieldings in hydroxylamines, hydrazines, hydrazides and related structures

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitomethane	Notes
Hydroxylamines	.		
NH ₂ OH	aqueous	+271 to $+274$	(a)
NH ₁ +OH	aqueous	+ 294 to + 296	(a)
NH ₂ O	aqueous	ca. + 284	(a)
R ₂ N—OR	various	+ 194 to + 241	(a)
(R = alkyl, aryl)	Va.10 ab	1131.00 , _ 11	(-)
Me ₃ Si—NHOSiMe ₃	in C_6D_6	+ 255.6	(b)
Hydrazines			
H_2N-NH_2	various	+331 to +335	(c)
R_2N-NR_2 (R = alkyl)	various	+285 to +328	(c)
PhNHNH ₂	various	ca. + 295 (NH)	(c)
		$ca. + 320 \text{ (NH}_2)$	(c)
$(Me_3Sn)_2N-N(SnMe_3)_2$	in benzene	+316.6	(d)
$(Me_3Sn)_2N-NMe_2$	in benzene	+ 304.1 (NSn)	(d)
		+ 282.9 (NMe)	(d)
$Me_3SnN(Me)-N(Me)SnMe_3$	in benzene	+308.0	(d)
$(Me_3Sn)_2N-N(Me)SnMe_3$	in benzene	+ 293.5 (NMe)	(d)
		$+317.2 (NSn_2)$	(d)
$(Me_3Sn)_2N-N(Ph)SnMe_3$	in benzene	+ 266.7 (NPh)	(d)
		$+313.4 (NSn_2)$	(d)
$(Me_3Sn)_2N-NHPh$	in benzene	+ 270.7 (NHPh)	(d)
Me ₃ SnNH—N(Ph)SnMe ₃	in benzene	+ 309.3 (NH)	(d)
NH ₂ ⁺ Cl ⁻	· P 0	. 055 0 (011)	
_ !	in D_2O	+ 257.2 (NH ₂)	(e)
ζ_z		+ 276.0 (N)	(e)
NCI	i- CDCl	+ 100 0 (NICI)	(a)
<u></u>	in CDCl ₃ + Cr(acac) ₃	+ 198.0 (NCl) + 241.5 (N)	(e)
C_{i}	+ Cr(acac) ₃	+ 241.5 (14)	(e)
Hydrazides			
ONH2 H H	i- DMGO	+ 244.7 (NIII)	(6)
C-N	in DMSO (Z-isomer)	+ 244.7 (NH) + 329.5 (NH ₂)	(f)
н `н	(Z-18011161)	T 327.3 (1411 ₂)	(f)
O H NH ₂			
`C-N	in DMSO	+ 247.9 (NH)	(f)
/ C-N	III DIVISO	+ 326.2 (NH ₂)	(+)

Table 8. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitomethane	Notes
O NH ₂ Me H	in DMSO (Z-isomer)	+ 248.7 (NH) + 326.4 (NH ₂)	(f) (f)
O C-N H	in DMSO (E-isomer)	+ 250.9 (NH) + 320.6 (NH ₂)	(f) (f)
$0 \\ C-N \\ H$	in DMSO (Z,Z-isomer)	+ 250.9	(f)
$0 \qquad N-C \qquad H$	in DMSO (Z,E-isomer)	+ 249.6 (HN) + 252.1 (NH)	(f) (f)
H N-C H	in DMSO (E,E-isomer)	+ 247.9	(f)
CF ₃ CONHNH ₂	in DMSO	+ 243.8 (NH) + 323.5 (NH ₂)	(f) (f)
CF ₃ CONHNHCOCF ₃	in DMSO	+ 256.0	(f)
[CF ₃ CONH—NCOCF ₃] ⁻ [H ₃ NNH ₂] ⁺	in DMSO	+205.3, +331.6	(f)
MeCONHNHCOMe	in DMSO	+251.5 (Z,Z-isomer) +247.4 +251.1 +26.4 (E,Z-isomer)	(f) (f)
	in CDCl ₃ , +50°C	+ 245.4 (<i>E,E</i> -isomer) C + 250.4	(f) (g)
MeOOCNHNHCOOMe	in CDCl ₃	+ 278.3	(g)
MeOOC N-N SiMe ₃ Me ₃ Si N-N COOMe	in CDCl ₃	+258.0 (Z,Z or E,E) +257.2 +255.6 (E,Z)	(g) (g)
		+255.6 (E,E) $+254.9$ $(E,E or Z,Z)$	(g)

Table 8. —contd.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitomethane	Notes
Me ₃ SiO(Me)C=N-N=C(Me Me N-N SiMe ₃)OSiMe ₃ in CH ₂ Cl ₂ , +1°C in CDCl ₃	+ 92.8 + 91.7	(g) (g)
↓† Me	0.02 м in CH ₂ Cl ₂	+ 241.0 (NCO) + 348.2 (NSi)	(h)
$N-N=C(Me)OSiMe_3$ Me_3Si		+ 289.0 (NSi) + 87.6 (N=C)	
Me ₂ N—N=C(Me)OSiMe ₃	0.02 M in CH ₂ Cl ₂ syn-isomer anti-isomer	+93.7 (N=C) +81.5 (N=C)	(h)
H ₂ NCSNHNH ₂	in DMSO	+ 302.9 (NMe ₂) + 316.8 (NH ₂) + 278.5 (C—NH ₂)	(i) (i)
H ₂ NCSNHNHCSNH ₂	in DMSO	+ 256.6 (NH) + 251.6 (NH) + 273.2 (NH ₂)	(i) (i) (i)
Me Me Cl O Si CH ₂ C-N Me NMe ₂	in CD ₂ Cl ₂	+209.9 (N—CO)	(j)
Me Me Si	in CD ₂ Cl ₂	+114.4 (N=CO)	(j)
Hydrazido complexes		N_{α} N_{β}	
trans- $[MoF(N_2H_2)(dppe)_2]BF_4$ trans- $[MoBr(N_2H_2)(dppe)_2]Br$ trans- $[MoI(N_2H_2)(dppe)_2]I$		+75.7 +233.3 +75.1 +231.5 +76.4 +233.7	(k) (k) (k)

Table 8. —contd.

Compound	Solution or state		n shielding eferred to neat hane	Notes
trans-[MoHSO ₄ (N ₂ H ₂) (dppe) ₂]HSO ₄	in DMF	+ 45.2 + 54.1	+215.6) +224.6	(k)
	in MeOH		,	
	291 K	+55.8	+229.0	(k)
	270 K	+55.9	+229.8	(k)
trans-[MoBr(N ₂ HMe) (dppe) ₂]Br	in DMF	+69.2	+ 227.7	(k)
trans-[MoBr(N2HEt)	in DMF	+71.8	+215.3	(k)
(dppe) ₂]Br	in THF	?	+209.6	(k)
trans-				. ,
$[MoBr(NN)(dppe)_2]Br$	in CH ₂ Cl ₂	+64.3	+ 208.8	(k)
[MoCl2(N2H2)(PMe2Ph)3]	in DMF	+67.9	+236.2	(k)
[MoI2(N2H2)(PMe2Ph)3]	in DMF	?	+221.3	(k)
	in THF	+68.8	+244.9	(k)
$trans-[WF(N_2H_2)(dppe)_2]BF_4$	in DMF	+95.6	+247.5	(k)
$trans-[WCl(N_2H_2)(dppe)_2]Cl$	in DMF	+96.2	+245.0	(k)
trans-[WBr(N ₂ H ₂)(dppe) ₂]Br	in DMF	+96.5	+246.1	(k)
$trans-[WI(N_2H_2)(dppe)_2]I$	in DMF	+97.8	+248.3	(k)
trans- $[WHSO_4(N_2H_2)]$ $(dppe)_2]HSO_4$	in DMF	+80.2	+ 242.3	(k)
trans- $[W(PrCN)(N_2H_2)$ (dppe) ₂][HSO ₄] ₂	in MeOH	+63.2	+ 229.8	(k)
trans-[WBr(N ₂ HMe) (dppe) ₂]Br	in DMF	+88.7	+ 243.4	(k)
trans-[WBr(N2HEt)	in DMF	+90.1	+ 228.8	(k)
(dppe) ₂]Br	in THF	+92.6	+ 230.2	(k)
trans-				` /
$[WBr(NN \bigcirc)(dppe)_2]Br$	in THF	+81.1	+ 222.3	(k)
[WCl2(N2H2)(PMe2Ph)3]	in DMF	+86.2	+ 249.5	(k)
[WI2(N2H2)(PMe2Ph)3]	in DMF	+87.4	+ 243.1	(k)

⁽a) See ref. 5, p. 312, and references therein.

⁽b) Data from refs 150 and 899, 36.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.

⁽c) See ref. 5, p. 316, and references therein.

⁽d) Data from refs. 833 and 931, 30.4 MHz and 20.3 MHz 15 N INEPT spectra (via $^{3}J_{\rm NSnCH}=1.5$ Hz or $^{2}J_{\rm NCH}=2$ Hz), field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; 40% to 60% solutions in $C_{6}D_{6}$.

⁽e) Data from ref. 1031, 40.55 MHz ¹⁵N spectra, reference as in footnote (d).

⁽f) Data from ref. 203, 40.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported vs fictitious

- ammonia standard, taken at +380.2 ppm from nitromethane (the latter value was actually obtained for a field which was perpendicular to sample tube, see Table 1).
- (g) Data from ref. 750, ¹⁵N-labelled samples, 20.24 MHz ¹⁵N spectra, field parallel to sample tube, referencing method as in footnote (d).
- (h) Data from ref. 141, ¹⁵N-labelled and unlabelled samples, 9.1 MHz ¹⁵N INEPT spectra, field perpendicular to sample tube, referencing as in footnote (d).
- (i) Data from ref. 760, 20.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (j) Data from ref. 133, 9.1 MHz ¹⁵N INEPT spectra, field perpendicular to sample tube, referencing as in footnote (d).
- (k) Data from ref. 745, ¹⁵N-labelled ligand, 18 24 MHz ¹⁵N spectra, field parallel to sample tube, reference as in footnote (d); DMF = dimethylformamide, THF = tetrahydrofuran, dppe = Ph₂PCH₂CH₂PPh₂.

Table 9. Nitrogen shieldings in some hydrazones and related structures

Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Non-tautomeric related ions	hydrazones and			
$C=N$ NR_2^2		in CDCl ₃		(a)
\mathbb{R}^1	\mathbb{R}_2^2		$(=N-)$ (NR_2)	
5-NO ₂ -2-furyl 4-NO ₂ -phenyl 4-Cl-phenyl Ph 4-OMe-phenyl 5-NO ₂ -2-furyl 4-NO ₂ -phenyl 4-Cl-phenyl Ph Me Ph Ph Ph Ph	Me ₂ Me ₂ Me ₂ Me ₂ Me ₂ Me ₂ —(CH ₂) ₄ — —(CH ₂) ₅ — —(CH ₂) ₆ — (cyclohexyl) ₂		+ 19.7 + 261.6 + 21.3 + 268.5 + 30.3 + 276.0 + 30.5 + 276.9 + 36.9 + 279.0 + 26.6 + 234.5 + 27.9 + 242.1 + 35.8 + 251.0 + 36.5 + 252.1 + 38.2 + 257.5 + 36.0 + 251.0 + 33.2 + 255.0 + 43.5 + 237.4	
				(b)
R = Me $R = Ph$		in DMSO in CF₃COOH in DMSO	+46.6 +252.1 +49.0 +254.3 +48.9 +239.0	

R ²		Me 			
R	² '_	✓'n,	+ Me		
H	R ² —		j`		
Me Me Me In DMSO	R ¹	R ²			
in CF ₃ COOH +153.6 in DMSO +153.7 R ¹ R ¹ R ² R ² R ³ R ⁴ H H H H neat liquid +34.6 in CF ₃ COOH +67.8 H Me H H neat liquid +49.6 in CF ₃ COOH +80.3 H Me Me Me in CF ₃ COOH +80.7 h Me H Ph neat liquid +48.9 in CF ₃ COOH +80.7 neat liquid +49.6 in CF ₃ COOH +81.4 neat liquid +24.8 in CF ₃ COOH +81.4 neat liquid +24.8 in CF ₃ COOH +83.2 in CF ₃ COOH +48.2 in CF ₃ COOH +63.2	Н	Н			in DMSO + 151.5
H	Me	Me			in DMSO $+153.2$
R ¹ R ² R ³ R ⁴ H H H H H neat liquid in CF ₃ COOH in CF ₃ COOH H Me Me Me neat liquid in CF ₃ COOH in CF ₃ COOH H Me H Ph neat liquid in CF ₃ COOH in CF ₃ COOH H 80.7 H Me H Ph neat liquid in CF ₃ COOH in CF ₃ COOH H 81.4 in CF ₃ COOH H 81.4 in CF ₃ COOH H 82.2 in CF ₃ COOH H 83.2 in CF ₃ COOH H 63.2		DI			
R ¹ R ² R ³ R ⁴ H H H H neat liquid in CF ₃ COOH H 67.8 in CF ₃ COOH H 80.3 H Me Me Me neat liquid in CF ₃ COOH H 80.7 neat liquid in CF ₃ COOH H 80.7 neat liquid in CF ₃ COOH H 80.7 neat liquid H 44.9 in CF ₃ COOH H 80.7 neat liquid H 49.6 in CF ₃ COOH H 81.4 neat liquid H 44.8 neat liquid H 49.6 in CF ₃ COOH H 81.4 neat liquid H 24.8 in CF ₃ COOH H 48.2 neat liquid H 32.2 in CF ₃ COOH H 63.2 Me Me Me Me neat liquid H 34.8 in CF ₃ COOH H 63.2 Me Me Me Me neat liquid H 34.8 in CF ₃ COOH H 62.2 Me Me Me H Ph neat liquid H 33.8 in CF ₃ COOH H 62.7 neat liquid H 33.8 in CF ₃ COOH H 62.7 neat liquid H 33.8 in CF ₃ COOH H 62.7 neat liquid H 57.2	H ——				in DMSO $+153.7$
R ¹ R ² R ³ R ⁴ H H H H H neat liquid in CF ₃ COOH in CF ₃ COOH H 80.3 H Me Me Me neat liquid in CF ₃ COOH H 80.7 H Me H Ph neat liquid in CF ₃ COOH H 80.7 H Me H H H neat liquid in CF ₃ COOH H 80.7 neat liquid H 49.6 in CF ₃ COOH H 81.4 in CF ₃ COOH H 81.4 in CF ₃ COOH H 82.2 in CF ₃ COOH H 83.2 in CF ₃ COOH H 83.2 in CF ₃ COOH H 63.2 Me Me Me Me neat liquid H 34.8 in CF ₃ COOH H 63.2 Me Me Me Me neat liquid H 34.8 in CF ₃ COOH H 62.2 Me Me Me H Ph neat liquid H 33.8 in CF ₃ COOH H 62.7 neat liquid H 33.8 in CF ₃ COOH H 62.7 neat liquid H 57.2		\mathbf{R}^1			
R ¹ R ² R ³ R ⁴ H H H H H neat liquid in CF ₃ COOH in CF ₃ COOH H Me H H neat liquid in CF ₃ COOH in CF ₃ COOH H 80.3 H Me Me Me neat liquid in CF ₃ COOH in CF ₃ COOH H 80.7 H Me H Ph neat liquid in CF ₃ COOH in CF ₃ COOH H 81.4 in CF ₃ COOH H 82.4 in CF ₃ COOH H 83.2 in CF ₃ COOH H 48.2 in CF ₃ COOH H 48.2 in CF ₃ COOH H 63.2	R ³	_N.			
R	R.4	`_/	Ņ		
R		'	\mathbf{p}^2		
in CF ₃ COOH +67.8 in CF ₃ COOH +67.8 in CF ₃ COOH +80.3 H Me Me Me neat liquid +48.9 in CF ₃ COOH +80.7 H Me H Ph neat liquid +49.6 in CF ₃ COOH +81.4 Me H H H neat liquid +24.8 in CF ₃ COOH +48.2 Me Me H H neat liquid +32.2 in CF ₃ COOH +63.2 Me Me Me Me neat liquid +34.8 in CF ₃ COOH +62.2 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 Ph Me H H neat liquid +33.8	\mathbf{R}^1	\mathbb{R}^2		\mathbb{R}^4	
in CF ₃ COOH +67.8 H Me H H neat liquid +49.6 in CF ₃ COOH +80.3 H Me Me Me neat liquid +48.9 in CF ₃ COOH +80.7 H Me H Ph neat liquid +49.6 in CF ₃ COOH +81.4 Me H H H neat liquid +24.8 in CF ₃ COOH +48.2 Me Me H H neat liquid +32.2 in CF ₃ COOH +63.2 Me Me Me Me neat liquid +34.8 in CF ₃ COOH +62.2 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 Me Me H H N neat liquid +33.8	H	H	Н	H	neat liquid + 34.6
H Me H H neat liquid in CF ₃ COOH H Me Me Me neat liquid in CF ₃ COOH H 80.3 H Me H Ph neat liquid in CF ₃ COOH H 80.7 H Me H H H neat liquid in CF ₃ COOH H 81.4 In CF ₃ COOH H 48.2 In CF ₃ COOH H 48.2 In CF ₃ COOH H 63.2 In CF ₃ COOH H 62.2 In CF ₃ COOH H 62.7					•
H Me Me Me neat liquid +48.9 in CF ₃ COOH +80.7 H Me H Ph neat liquid +49.6 in CF ₃ COOH +81.4 Me H H H neat liquid +24.8 in CF ₃ COOH +48.2 Me Me H H neat liquid +32.2 in CF ₃ COOH +63.2 Me Me Me Me neat liquid +34.8 in CF ₃ COOH +62.2 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 Ph Me H H N neat liquid +57.2	H	Me	Н	H	
in CF ₃ COOH +80.7 H Me H Ph neat liquid +49.6 in CF ₃ COOH +81.4 Me H H H neat liquid +24.8 in CF ₃ COOH +48.2 Me Me H H neat liquid +32.2 in CF ₃ COOH +63.2 Me Me Me Me neat liquid +34.8 in CF ₃ COOH +62.2 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 Ph Me H H neat liquid +57.2					
H Me H Ph neat liquid in CF ₃ COOH in CF ₃ C	1	Me	Me	Me	
in CF ₃ COOH +81.4 Me H H H H neat liquid +24.8 in CF ₃ COOH +48.2 Me Me H H neat liquid +32.2 in CF ₃ COOH +63.2 Me Me Me Me neat liquid +34.8 in CF ₃ COOH +62.2 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 Ph Me H H neat liquid +57.2	Н	Me	н	Ph	
Me H H H neat liquid in CF ₃ COOH in CF ₃ CO		IVIC	11	1 11	
in CF ₃ COOH +48.2 Me Me H H neat liquid +32.2 in CF ₃ COOH +63.2 Me Me Me Me neat liquid +34.8 in CF ₃ COOH +62.2 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 neat liquid +57.2	Me	Н	Н	Н	
in CF ₃ COOH +63.2 Me Me Me Me neat liquid +34.8 in CF ₃ COOH +62.2 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 Ph Me H H neat liquid +57.2					<u> </u>
Me Me neat liquid in CF ₃ COOH + 34.8 Me Me H Ph neat liquid neat liquid neat liquid + 33.8 Ph Me H H neat liquid + 57.2	Me	Me	H	H	
in CF ₃ COOH +62.2 Me Me H Ph neat liquid +33.8 in CF ₃ COOH +62.7 Ph Me H H neat liquid +57.2	N 4 -	14-	3.7.	14.	
Me Me H Ph neat liquid + 33.8 in CF ₃ COOH + 62.7 Ph Me H H neat liquid + 57.2	vie	Me	ме	Me	•
in CF ₃ COOH +62.7 Ph Me H H neat liquid +57.2	Me	Me	Н	Ph	
Ph Me H H neat liquid +57.2					•
	Ph	Me	H	Н	·

Table 9. —cont.

Compound	pound Solution or state Nitrogen shielding (ppm) referred to neat nitromethane		Notes
$R = \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{$	in DMSO		(c)
<u>R</u>		(=N-) (NH) (1-CN) (2-CN)	
H F NO ₂		+2.2 +192.2 +118.9 +98.2 +2.8 +194.4 +119.0 +98.2 +3.6 +194.5 +118.5 +99.0	
$R = \left(\sum_{N=0}^{\infty} $	in DMSO		(c)
<u>R</u>		(=N-) (NH) (CN)	
Н	E-isomer	+4.5 +204.5 +99.8	
F	Z-isomer	$ \begin{array}{rrrr} +8.1 & +200.6 & +122.6 \\ +4.5 & +205.0 & +100.1 \end{array} $	
	E-isomer Z-isomer	+4.5 +205.0 +100.1 +8.0 +202.4 +122.9	
NO_2	E-isomer	+7.4 +206.4 +98.2	
	Z-isomer	+11.0 + 203.0?	

(e) (e)

Table 9. —cont.

Compound	Solution or state	Nitroger nitromet	shielding (ppm) referred to neat hane	Notes
Me	in CDCl ₃	+ 19.8	+205.8 +192.9 +78.1 +204.5	(e)
Н	in DMSO, 300 K	+18.6	+ 202.8	(f)
	in DMSO, 330 K	+16.5	+ 202.2	(f)
	in pyridine, 300 K	+21.8	+208.3	(\mathbf{f})
	in pyridine, 330 K	+ 19.4	+ 206.4	(f)
	solid state, 305 K	+25.5	+ 211.4	(g)
	solid state, 358 K	+25.4	+211.3	(g)
	in CDCl ₃	+ 18.9	+206.4 + 192.4 + 76.1	(e)
		+ 17.4	+205.4 + 191.5 + 75.3	
F	in CDCl ₃	+ 19.8	+208.6 + 192.1 + 75.8	(e)
			+ 207.6	
Cl	in CDCl ₃	+20.8	+209.4 + 192.3 + 74.2	(e)
			+ 208.7	
Br	in CDCl ₃	+20.8	+209.3 + 192.5 + 74.7	(e)
			+ 208.2	
I	in CDCl ₃	+21.3	+209.2 + 192.1 + 73.9	(e)
	i en ei		+ 208.6	
MeCOO	in CDCl ₃	+ 22.7	+210.8 + 192.9 + 72.3	(e)
	: cp.cv		+ 209.8	
CF ₃	in CDCl ₃	+ 22.2	+212.1 + 192.8 + 72.1	(e)
	: and	. 22.2	+210.9	
NO_2	in CDCl ₃	+ 22.7	+213.2 + 191.9 + 67.4	(e)
		+ 22.4	+ 212.9	
			+ 212.9	

$$SO_3Na$$
 OMe
 $HO_3SCH_2CH_2SO_2$
 $N=C$
 ## Hydrazones involved in azo-hydrazone tautomerism (see also Table 28)

Table 9. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
	+ 33°C (76% NH)	\[\begin{cases} -11.7 & +144.9 \\ -7.8 & +150.7 \end{cases} \]	
	+85°C (73% NH)	$\begin{cases} -18.5 & +132.5 \\ -15.1 & +138.2 \end{cases}$	
Ph N, N H COR azo tautomer	solid state and solution		(h)
R			
OH (ca. 97% NH)	solid CDCl ₃ , +27°C	+ 179.3 - 16.6 + 173.8	
	+ 57°C	-16.5	
	benzene, $+27^{\circ}$ C CD ₃ NO ₂ , $+27^{\circ}$ C	- 16.2 + 178.0 - 16.3	
OMe (ca. 70% NH)	solid	+ 129.7, + 148.3	
	$CDCl_3, +27^{\circ}C$	-16.9 +140.5	
	+ 57°C benzene, + 27°C	- 16.7 + 131.4 - 16.8 + 112.5	
	+ 57°C	-16.5 + 101.9	
	CCl_4 , $+27$ °C	- 16.6	

(i)

(i)

(i) (j)

(k)

```
NHPh (ca. 97% NH)
                                      solid
                                                                            +188.4
                                      CDCl_3, +27^{\circ}C
                                                                  -16.8
                                                                            +178.1
                                               + 57°C
                                                                  -16.8
                                                                            +175.9
                                      benzene, +27°C
                                                                 -16.5
                                                                            +180.5
                                                + 57°C
                                                                 -16.5
                                                                            -176.2
                                      CCl_4, +27°C
                                                                  -16.9
                                       in CDCl<sub>3</sub>
```

azo tautomer

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
O H N Ph	in CDCl ₃ + 57°C	- 30.7 + 126.0 (69.4% NH) (-121.6 N-α,β)	(k)
⇒ azo tautomer	+ 27°C	$(-121.6 \text{ N-}\alpha, \beta)$ -26.5 + 139.1 (72% NH) $(-120.1 \text{ N-}\alpha, \beta)$	
$N=N-Ph$ (α) (β)	−3°C	-21.9 + 143.3 (75% NH) $(-119.5 \text{ N-}\alpha,\beta)$	
(a) (p)	+ 27°C	-15.9 + 154.8 (79% NH) (-118.8 N- α , β)	
NH ₂ O H N Ph N azo tautomer			(1)
	in DMSO, +27°C +87°C	+7.6 +200.6 (96% NH) +5.3 +199.3 (95% NH)	
H ₂ N Ph azo tautomer			(1)
	in DMSO, +27°C +87°C	-4.6 +184.4 (88% NH) -7.7 +180.4 (87% NH)	

(m)

(m)

(m)

in DMSO

$$-15.1 + 202.8$$

in DMSO

$$+3.2 + 194.1$$

in DMSO

Table 9. -cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R—————————————————————————————————————	H_2O , $pH = 7$	(=N-) (NH) +15.2 +172.9	
SO ₃ Na	pH = 12 $H_2O, pH = 12$ $H_2O, pH = 12$	-93.0 -48.9 -93.5 -36.5	
	. .		

- (a) Data from ref. 828, 30.4 MHz ¹⁵N INEPT spectra (via ²J(NH) of ca. 7 Hz), field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (b) Data from ref. 142, 20.3 MHz ¹⁵N INEPT spectra, other details as in footnote (a).
- (c) Data from ref. 855, ¹⁵N-labelled and unlabelled samples, 10.095 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
 - (d) Data from refs. 721 and 727, details as in footnote (c).
 - (e) Data from ref. 724, details as in footnote (c); the data set in italics were obtained without the use of Cr(acac).
 - (f) Data from ref. 727, 15 N-labelled hydrazone moiety, no relaxation reagent used, other details as in footnote (c).
- (g) Data from ref. 412, 20.28 MHz ¹⁵N CPMAS spectra, originally referenced to solid NH₄Cl, taken at +352.5 ppm from neat nitromethane, this is erroneous, since the resonance of solid ammonium chloride lies at +341.0 ppm (uncorrected) from neat nitromethane, see ref. 5, p. 224, and references therein; we used the latter value in recalculations.
- (h) Data from ref. 726, ¹⁵N-labelled and unlabelled samples, 10.095 MHz solution ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; 20.28 MHz ¹⁵N CPMAS spectra of solids, referenced originally to solid NH₄Cl, taken at + 352.5 ppm from neat nitromethane, and reported vs the latter standard; this is erroneous, as shown in footnote (g), and we recalculated the data for solids according to footnote (g).

- (i) Data from ref. 1065, ¹⁵N-labelled and unlabelled samples, 40.55 MHz ¹⁵N conventional PFT and INEPT spectra, field parallel to sample tube, referenced originally to neat formamide, + 268.6 ppm from neat nitromethane (Table 2), conversion scheme IVb (Table 1); originally reported to a fictitious ammonia reference, taken at + 112.4 ppm from formamide; this is erroneous, since the latter value refers to a field which is perpendicular to sample tube; we retrieved the original values and performed the recalculation as above.
- (j) Data from ref. 728, 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (k) Data from ref. 720, details as in footnote (c).
 - (1) Data from ref. 723, details as in footnote (c).
- (m) Data from ref. 725, 27.2 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to 50% nitromethane in DMSO, about -1.0 ppm from neat nitromethane (see Table 26), conversion scheme IIb (Table 1).
- (n) Data from ref. 548, 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac), added as a relaxation reagent.
- (o) Data from ref. 729, 40.6 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

Table 10. Nitrogen shieldings in ureas, thioureas, guanidines, amidines, amidoximes and related structures

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
H ₂ N—C—NH ₂ II O (urea)	20% in DMSO solid	+ 302.5 + 302.3	(a) (b)
H ₂ NCNHCH ₂ NHCNH ₂ II II O O	20% in DMSO solid	+ 303.9 (NH ₂) + 284.9 (NH) + 304.1 (NH ₂) + 285.8 (NH)	(a) (a) (b) (b)
H ₂ NCNHCH ₂ OH II O	20% in DMSO	+ 302.8 (NH ₂) + 277.7 (NH)	(a) (a)
HOCH ₂ NHCNHCH ₂ OH II O	20% in DMSO solid	+ 277.9 + 280.3	(a) (b)
HOCH ₂ NHCN(CH ₂ OH) ₂ II O	20% in DMSO	+ 256.5 (N)	(a)
MeOCH ₂ NHCNHCH ₂ OMe 11 O	solid	+ 288.2	(b)
R——NHCNH——R			
R = H	in DMSO solid state	+ 276 + 276	(c) (c)

R = Me	in DMSO	+ 275	(c)
MeONHCNH ₂ II O	in H ₂ O	+ 214.8 (NH)	(d)
H ₂ NCNHCNH ₂ (biuret) II II O O	in H ₂ O	+ 260.9 (NH)	(d)
MeCNHCNH ₂ II II O O	in DMSO	+ 292.6 (NH ₂) + 230.7 (NH)	(e) (e)
PhCNHCNH ₂ 0 0	in DMSO	+ 291.2 (NH ₂) + 237.6 (NH)	(e) (e)
R—NHCNCNH—R II II O O			
R = Ph	in acetone	+ 266 (NH) + 239 (N)	(c) (c)
R = p-tolyl	in acetone	+ 268 (NH) + 239 (N)	(c) (c)
MeCNHCNHCMe O O O	in DMSO	+ 230.5	(e)
PhCNHCNHCPh 0 0 0	in DMSO	+237.3	(e)
MeCNHCNHCPh 0 0 0	in DMSO	+ 239.8 (NHCOPh) + 228.2 (NHCOMe)	(e) (e)

Table 10. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Urea moieties in melamine-formaldehyde adducts	in DMSO		(f)
H ₂ NCONH— (chain end) —NHCONHCH ₂ NHCONH—		+ 303.3 (NH ₂) + 278.3 (NH) + 284.5 (NHCH ₂)	
-NHCH ₂ NH- (within chains) -NHCH ₂ -O-CH ₂ NH		+ 285.1 + 285.5	
O			
R = Ph $R = p$ -tolyl	in benzene in benzene solid state	+ 237 + 237 + 237	(c) (c) (c)
$ \begin{array}{ccc} R & & & \\ O & & & \\ R & & & \\ O & & & \\ R & & & \\ O & & & \\ R & & & \\ O & & \\ O & $			
R = Ph	in acetone	+233	(c)
R = p-tolyl	in acetone solid state	+ 233 + 233	(c) (c)

(h)

Poly(isocyanurate) resins isocyanurate moieties urea and biuret moieties isocyanate moieties (see Table 15)	solid state	+ 232 + 262 to + 283 + 336	(c)
Biuret resins from 4,4'-methylene-bis(PhNCO) imide nitogens (?) biuret moieties urea moieties isocyanate moieties (see Table 15)	solid state	+ 218 + 272 (terminal N) + 245 (central N) + 282 + 340	(c)
H C R O O (2) N N(1) Me Me	0.8-2.0 M in CDCl ₃		(g)
R = Ph $R = p$ -Cl-phenyl		+ 235.1 (N-1) + 237.2 (N-2) + 234.8 (N-1)	
R = p-Br-phenyl		+ 237.0 (N-2) + 234.4 (N-1) + 236.6 (N-2)	
$O_{\text{C}}^{\text{R}^2} \subset {\mathbb{R}}^1$			

in DMSO

Table 10. —cont.

Compound				Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R ¹	R ²	R³	R ⁴			
Ph Ph	Et Et	H Me	H H		+ 226.1 + 231.0 (N-1) + 226.7 (N-2)	
Ph PhCH ₂ CH ₂ CH ₂ =CHCH ₂ CH ₂ =CHCH ₂	Et H MeCH(OH)CH ₂ MeCH(OH)CH ₂	Me Me H Me	Ме Ме Н Н		+ 231.2 + 232.6 + 225.7, + 227.7 + 232.8 (N-1)	
CH ₂ =CHCH ₂ (oth	MeCH(OH)CH ₂ ner diastereomer)	Me	н		+ 225.7 (N-2) + 230.9 (N-1) + 227.7 (N-2)	
Ph C Et O HOHC N Me				in DMSO	+ 236.0 (NMe) + 270.1 (NH)	(h)
OPh C Et CHOH H N N Me				in DMSO	+ 279.2 (NMe) + 231.3	(h)
O Ph C Et O				in DMSO	+ 263.9	(h)

$ \begin{array}{c} R - CH = N - NHCNH_2 \\ II \\ O \end{array} $	in DMSO		(i)
R		$N-NH$ NH_2 $=N$	
2-furyl 2-(2-furyl)-ethyl		+ 227.6 + 307.1 + 80.6 + 215.8 + 307.0 + 71.4	
$ \begin{array}{c} H \\ I \\ N \end{array} $ $ \begin{array}{c} CH = N - NHCNH - \\ II \\ O \end{array} $ $ \begin{array}{c} R \end{array} $	in DMSO		(i)
<u>R</u>		N-NH NHPh ring NH	
H OMe Cl		+233.8 +279.9 +231.4 +232.4 +282.8 +231.8 +232.3 +280.7 +231.2	
$O CH = N - NHCNH - SO_2NH_2$	in DMSO	+ 277.5 (NHPh) + 226.8 (NH)	(i) (i)
H ₂ N—C—NH ₂	various	+219 to +237	(j)
(thiourea) PhNHCNH ₂ III S	in DMSO	+ 250.2 (NHPh) + 269.2 (NH ₂)	(k) (k)
HN NH	in H ₂ O/D ₂ O	+ 266	(1)

Table 10. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
H ₂ NCNHNH ₂ II S	in DMSO	+ 278.5 (C-NH ₂) + 256.6 (NH) + 316.8 (N-NH ₂)	(m) (m) (m)
H ₂ NCNHNHCNH ₂ II II S S	in DMSO	+ 273.2 (NH ₂) + 251.6 (NH)	(m) (m)
McCNHCNH ₂ II II O S	in DMSO	+ 254.3 (NH ₂) + 217.5 (NH)	(n) (n)
PhCNHCNH ₂ II II O S	in DMSO	+ 253.1 (NH ₂) + 244.0 (NH)	(n) (n)
MeCNHCNHCMe II II II O S O	in DMSO	+ 210.7	(n)
PhCNHCNHCPh II II II O S O	in DMSO	+ 216.9	(n)
MeCNHCNHCPh II II II O S O	in DMSO	+ 207.6 (NHCOMe) + 221.2 (NHCOPh)	(n) (n)
MeCNRCNH ₂ II II O S	in DMSO		(0)

p-nitrophenyl p-chlorophenyl phenyl p-NMe ₂ -phenyl		NR + 205.5 + 206.4 + 203.5 + 204.8			
MeCNHCNHR II II O S	in DMSO				(o)
<u>R</u>		NH	NHR		
p-nitrophenyl p-chlorophenyl phenyl p-NMe ₂ -phenyl		+ 213.3 + 214.6 + 214.8 + 215.7	+235.3 +237.0 +235.3 +235.7		
R—CH=N—NHCNH ₂ II S	in DMSO				(p)
R		N-NH	NH ₂	=N	
2-furyl 2-thiophyl 2-pyrrolyl		+ 211.0 + 212.0 + 213.7	+ 274.9 + 274.0 + 275.1	+69.6 ? +73.8	

Table 10. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
H ₂ NCNHNH ₂ II S	in DMSO	+ 278.5 (C-NH ₂) + 316.8 (N-NH ₂)	(q) (q)
		+256.6 (NH)	(q)
H ₂ NCNHNHCNH ₂ S S	in DMSO	+ 272.3 (NH ₂) + 251.6 (NH)	(q) (q)
NPh SNHPh	in CDCl ₃	+ 206.0 (NPh) + 242.5 (ring N)	(r)
NPh SNH SNPh	in CDCl ₃	+ 182.6 (NPh) + 253.9 (ring N)	(r) (r)
S NH	in CDCl ₃	+ 307.6 (NBu ⁿ) + 193.2 (=NH)	(s) (s)

$$\sum_{\substack{N \\ Bu^n}} S = N - N = N - Pr$$

$$+242.7 (NBu^n)$$

$$NH_2$$

$$S = NH_2$$

$$+167.9 (NNH)$$

$$+175 \text{ to } +221 \text{ (=NR)} +312 \text{ to } +354 \text{ (NR}_2)$$

$$+265 \text{ to } +308$$

(v)

Table 10. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
\mathbf{R}^1 \mathbf{R}^2		NR^1 NR^2 $=N$	
H Bu ^t CH ₂ CMe ₂ — its hydrochloride H Bu ^t Ph Ph		+ 323.5 + 296.0 + 133.5 + 303.1 + 279.3 + 243.4 + 322.6 + 295.1 + 131.8 + 295.6 + 290.0 + 106.7	
N _N NH ₂	in DMSO	NH_2 $N = N$	(v)
OH OH	parent compound hydrochloride	+ 323.0 + 319.9 + 125.8 + 302.8 + 297.7 + 237.6	
		$NH_2 = N NO_2$	(w)
(NH2)2C=N-NO2	solid in DMSO in DMF, -47°C	+ 294 + 144 + 11 + 297 + 139 + 10 + 301 + 141 + 11	
Me ₂ N C H II N Ph (amidine structure)	neat liquid in cyclohexane in acetone in chloroform in MeOH in EtOH in CF ₃ COOH	NMe ₂ =NPh + 299.4 + 147.3 + 304.3 + 147.4 + 301.4 + 151.2 + 301.7 + 153.5 + 298.4 + 163.1 + 298.4 + 165.0 + 293.1 ?	(x)

163

Me N-C NH	in aqueous HCl +	294.7 (N—H) (y) 183.3 (N—O) (y) 270.1 (N—H) (y) 216.8 (N—O) (y)
Ph NR ¹ R ² OH	R = OH +	(z) 268.5 (N-1) 274.0 (N-3) 265.1 (N-1) 269.7 (N-3)
R^1 R^2	NI	$R^1R^2 = NOH$
H (Z-isomer)	+	317.0 + 92.4
its hydrochloride H (p-nitro, Z-isomer)		278.3 +211.6
H H (p-nitro, Z-isomer) Ph H (Z-isomer)		316.4 +84.4
its hydrochloride		287.4 +71.5 262.2 + 192.2
Me H (Z-isomer)		304.3 +91.2
$-(CH_2)_5$ $ (Z-isomer)$		308.8 + 71.1
(E-isomer)		301.5 + 75.2
Me Me (E-isomer)		324.6 + 78.1
Ph Me $(E, Z$ -isomers)	+.	303.1 + 36.5

- (a) Data from ref. 1066, 10.09 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to NH₄ of NH₄NO₃ in DMSO, +388.1 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (b) Data from ref. 440, 20.3 MHz CPMAS ¹⁵N spectra, ¹⁵N-labelled and unlabelled samples, referenced to liquid ammonia, +381.9 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
- (c) Data from refs 441 and 1057, 20.3 MHz ¹⁵N CPMAS spectra, and 50.7 MHz ¹⁵N solution spectra, referenced originally to liquid NH₃, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (d) Data from ref. 515, 25.34 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (e) Data from ref. 777, saturated solutions, 10.09 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (f) See footnote (a).
- (g) Data from ref. 1026, 25.36 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effect.
- (h) Data from ref. 753, 10.095 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to nitromethane containing some Cr(acac)₃ as a relaxation reagent and originally corrected for the presence of the latter vs neat nitromethane, uncorrected for bulk susceptibility effects, samples doped with Cr(acac)₃.
- (i) Data from ref. 1067, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (i) See ref. 5, p. 356, and references therein.
- (k) Data from ref. 730, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (1) Data from ref. 1068, 18.059 MHz ¹⁴N spectrum, other details as in footnote (d).
- (m) Data from ref. 760, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M HNO₃, +6.2 ppm fron neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (n) See footnote (e).
 - (o) Data from ref. 822, details as in footnote (e).
 - (p) See footnote (i).
 - (q) Data from ref. 760, details as in footnote (m).
- (r) Data from ref. 851, 10.09 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to aqueous KNO₃ and recalculated to neat nitromethane, uncorrected for bulk susceptibilty effects, 0.5–1.0 M solutions.
 - (s) See footnote (k).

- (t) See footnote (m).
- (u) See ref. 5, pp. 322-327, and references therein.
- (v) Data from ref. 755, 10.09 MHz ¹⁵N spectra, proton-coupled, field perpendicular to sample tube, referenced originally to ammonium nitrate but reported vs liquid ammonia, +380.2 ppm from neat nitromethane, conversion scheme IVa (Table 1); assignments are based on ¹H-¹⁵N splitting patterns.
- (w) Data from ref. 414, 15 N-labelled compound, 20.3 MHz 15 N CPMAS and solution spectra, field parallel to sample tube for the latter, referenced originally to NO $_{1}^{-}$ in aqueous ammonium nitrate, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (x) Data from ref. 1069, 30.4 MHz and 50.7 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (y) Data from ref. 121, $10.09 \,\text{MHz}^{15} \,\text{N}$ conventional PFT, proton decoupled, and INEPT spectra, proton-coupled, optimized for ${}^2J(\text{NH}) = 2.5 \,\text{Hz}$; ca. 1 M solutions, field perpendicular to sample tube, referenced originally to aqueous ammonium nitrate and recalculated to liquid ammonia standard, taken at $+380.2 \,\text{ppm}$ from neat nitromethane conversion scheme IVa (Table 1).
- (z) Data from ref. 618, ¹⁵N-labelled substances from *Streptomyces parvus* cell cultures grown on ¹⁵N-labelled L-glutamate, extracts in aqueous HCl; 27.37 MHz ¹⁵N spectra with and without ¹H gated decoupling, referenced originally to "HNO₃", probably I M aqueous HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); the conversion is uncertain in view of the large range of nitrogen shieldings in nitric acid as a function of its concentration (see Table 2).
 - (A) See footnote (v).

Table 11. Nitrogen shieldings in cyanamide and carbodiimide structures

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Cyanamide structures R ₂ N—C≡N OAc	various	+ 335 to + 372 (NR ₂) + 185 to + 196 (CN)	(a) (a)
HQ OAC OAC OAC	in CDCl ₃	+ 35.7 (ring N) + 138.6 (CN)	(b) (b)
Dicyanamido anions (Ph ₄ As) ₂ {M[N(CN) ₂] ₄ } M	in CDCl ₃	amido-N CN	(c)
Zn Cd Hg		+ 366.7 + 220.2 + 345.3 + 212.6 + 367.5 ?	
$K[N(CN)_2]$ [Fe(dipy) ₂][N(CN) ₂]	in H ₂ O in EtOH in CH ₂ Cl ₂	+ 367.7 + 223.5 + 330 + 230 + 230 + 90	(c) (d) (d)
Carbodiimide structures R-N=C=N-R	various	+ 270 to + 297	(a)

⁽a) See ref. 5, p. 335, and references therein.

⁽b) Data from ref. 870, 40.5 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to HNO₃ and reported vs liquid ammonia taken at +380.2 ppm from neat nitromethane, conversion scheme IVd (Table 1).

⁽c) Data from ref. 1070, 10% ¹⁵N-labelling, 20.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃⁻, probably aqueous NaNO₃, +3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

⁽d) Data from ref. 1071, low-precision 14.4 MHz ¹⁴N measurements, referenced to the nitrate ion, ca. +4 ppm from neat nitromethane (Table 2).

Table 12. Nitrogen shieldings in amides, thioamides, sulphonamides and related structures

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
	"°		
Amide structures	R—C NR ₂		
HCONH,	neat liquid	+ 268.1	(a)
(formamide)	various solvents	+264 to +272	(a)
	in DMSO	+ 268.1	(b)
HCONHMe	in DMSO	+271.8(Z)	(b)
		+273.8 (E)	(b) (b)
HCONMe ₂	neat liquid	+ 277.01	(a)
(dimethylformamide, DMF)	various solvents	+275 to +283	(a)
HCON(SiMe ₃) ₂	50% in CH ₂ Cl ₂	+ 245	(c)
MeCONH ₂ (acetamide)	in acetone	+ 274.7	(a)
- ` .	in H ₂ O	+268.0	(a)
MeCONHMe	in DMSO	+276.0(Z)	(b)
		+277.8(E)	(b) (b)
MeCONMe ₂	in acetone	+282.1	(a)
MeCONHNCH ₂ CH ₂ Ph	in CDCl ₃	+ 258.8	(d)
MeCON CH ₂ CH ₂ Ph CH ₂ COOH	in CDCl ₃	+ 262.9	(d)
CH ₂ COOH	in cbei;	1 202.7	(4)
M. CON - Me		+ 275.9 (Z, 70%)	(e)
$MeCON < Me \\ CH_2COOMe$	in CHCl ₃	+ 274.6 (E, 30%)	(e)
	· orror	+250.3 (Z, 70%)	(e)
MeCON	in CHCl ₃	+250.5(E, 30%)	(e)
MeOOC	11.1	. 240.0	(6)
MeCONHPh	solid state	+ 248.0	(f)
	in H ₂ SO ₄	+ 227.1	(f)

Table 12. —cont.

Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
MeCO(SiHMe) ₂	,	50% in CH ₂ Cl ₂	+ 253	(c)
CF ₃ CONHCH ₂ CH ₂ Ph		in CDCl ₃	+ 264.5	(d)
EtCO(SiHMe) ₂		50% in CH ₂ Cl ₂	+ 262	(c)
$RCON < \frac{SiMe_2}{SiMe_2}$		50% in CH ₂ Cl ₂		(c)
		R = H	+ 245	
		R = Me	+ 247	
D		$R = CF_3$	+ 253	
Î	R = H	in CCl ₄	+ 263.8	(a)
N O		in H ₂ O	+ 256.8	(a)
(<i>Y</i>		in CHCl ₃	+ 269.2	(e)
_		•	+ 268.7	(g)
	R = Me	neat liquid	+ 269.4	(g)
		in DMSO	+ 268.9	(g)
		in MeOH	+ 265.1	(g)
		in CF ₃ CH ₂ OH	+ 263.7	(g)
	$\mathbf{R} = \mathbf{E}\mathbf{t}$	neat liquid	+ 256.6	(g)
		in DMSO	+ 255.6	(g)
		in CHCl ₃	+ 254.6	(g)
		in EtOH	+ 254.2	(g)
		in MeOH	+ 253.3	(g)
		in CCl ₃ CH ₂ OH	+ 252.4	(g)
		in H ₂ O	+ 251.8	(g)
		in CF ₃ CH ₂ OH	+ 251.3	(g)

169

	sat. solutions	amido NPh group			(i)
₩ R		para	meta	ortho	
N O R = none	in DMSO	+ 245.7	+ 245.7	+ 245.7	
$\langle \ \ \rangle$	in acetone	+247.4	+247.4	+247.4	
R = OMe	in DMSO	+247.5	+244.5		
	in acetone	+248.6			
R = Me	in DMSO	+246.6	+244.7	+248.1	
	in acetone	+248.4	+247.1		
R = Et	in DMSO	+ 244.4			
R = C1	in DMSO	+ 245.9	+245.9	+251.4	
	in acetone	+248.2			
R = Br	in DMSO		+245.9		
$R = NO_2$	in DMSO	+ 245.2			
R					
\hat{J} $R = H$	in CCl ₄	+ 264.4			(a)
N	in H ₂ O	+ 257.7			(a)
R = Me	in CHCl ₃	+ 270.3			(a) (e)
H I					
	in CDCl ₃	+ 265.3			(h)
(ε-caprolactam)					
Me N N N Mc	in CHCl ₃	+ 276.9			(e)

Table 12. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane NH group			Notes (j)
R	30% in DMSO				
PhCH ₂ CONH—		para	meta	ortho	
$R = NH_2$			+ 244.1	+251.7	_
-	(NH_2)	_	+318.0	+ 322.3	
NHMe		-	+243.8	_	
	(NHMe)	_	+324.2	_	
NMe ₂	, ,	-	+244.2	+251.2	
	(NMe_2)	-	+ 337.9	+349.8	
ОН		+246.9	+244.3	+252.7	
OMe		+246.7	_	+255.9	
Et		+245.5	+244.7	+250.4	
i-Pr		_	_	+250.9	
Me		+245.3	+244.9	+ 249.2	
none		+ 244.6	+244.6	+244.6	
F		+ 245.7	+ 244.7	+258.2	
Cl		+ 245.7	+245.1	+246.5	
Br		+245.5	· -	+248.6	
CN		+ 242.6	+ 245.3	+ 248.6	
COMe		+242.7	+245.4	+ 250.9	
NO ₂		+ 242.0	+245.0	+ 252.0	
CONH ₂		=	_	+ 250.6	
-	(NH_2)	-	_	+269.9	

R	$-c^{R^2}$			
R	_c,cc	NR ³ R ⁴		
R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴
Н	H	Н	Н	Me
Н	Me	Н	Н	Me
Me	Me	ч	П	Ma

1 m in CDCl₃

R	R'	R²	R'	R*
Н	Н	Н	Н	Me
Н	Me	Н	Н	Me
Me	Me	Н	Н	Me
Н	Н	Me	Н	Me
H	Me	Me	Н	Me
Н	Br	Н	H	Me
Н	Br	Н	H	t-Bu
Н	Br	H	i-Pr	i-Pr
Br	Н	Н	Н	Me
Br	Н	H	H	t-Bu
Br	H	H	i-Pr	i-Pr
Н	Cl	Н	H	Me
Н	Cl	H	H	t-Bu
Cl	H	H	Н	Me
Cl	H	Н	Н	t-Bu

+ 276.4 + 277.6 + 276.0 + 284.5 + 284.8 + 277.5 + 242.3 + 235.6 + 275.9 + 240.1 + 233.0 + 275.0 + 241.3 + 239.1

(benzamides)

0.4 m in DMSO

CONH₂

	para	meta
$R = NMe_2$	+ 282.0	+ 278.6
NH_2	+282.6	+278.7
OMe	+280.0	+278.1
NHCOMe	+279.6	+ 277.9
Me	+279.2	+278.5
none	+278.4	+278.4
F	+278.5	+277.5

(l)

(k)

Table 12. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane				Notes
	Cl	+ 277.8	+ 277.4			
	Br	+ 277.8	+ 277.4			
	Ī	+ 277.9	+277.6			
	CONH ₂	+277.1	+277.6			
	CSNH ₂	+277.2	+277.5			
	COMe	+ 276.6	+ 277.5			
	COOMe	+276.5	+ 277.4			
	CF ₃	+ 276.4	+ 277.2			
	CN	+ 276.1	+ 277.0			
	NO_2	+ 275.5	+ 276.6	_		
PhCONHMe	solid state	+ 279.4				(f)
	in H ₂ SO ₄	+ 232.4				(f)
R		CONMe ₂				(m)
\checkmark	sat. solutions	CDCl ₃	Pyridine	DMSO	CD ₃ OD	
CONMe ₂	R = none	+ 278.8	+ 278.6	+275.0	+ 271.9	
	4-OMe	+280.2	+280.7	+276.3	+272.8	
	4-Me	+280.6	+281.5	+275.4	+272.5	
	4-Cl	+278.9	+281.2	+274.3	+271.4	
	2-OMe	+275.4	+276.5	+272.2	+268.9	
	2-OH	+277.1	+276.8	+271.6		
	2- M e	+275.9	+277.3	+272.3	+268.7	
	2-C1	+275.1	+275.5	+271.4	+268.6	
	2-OH-5-Cl	+276.5	+276.8	+272.0		
	2-OH-5-NO ₂		+275.9	+271.0		
	2-OH-5-OMe	+273.5	+276.8	+271.9	+267.6	
	2-OH-5-Me	+276.0	+277.2	+271.5	+268.8	
	2-OH-3,5-Me ₂	+277.2	+276.6	+271.9	+268.0	

R		CON(CI	$H_2Ph)_2$			
	sat. solutions	CDCl ₃	Pyridi	ne DM	ISO	CD ₃ OD
N(CH ₂ Ph) ₂	R = none	+ 254.5	+ 255	.6 +2	51.4	
	4-OMe	+256.3	+ 256		52.7	+ 248.6
	4-Me	+255.3	+ 256		52.3	+ 248.3
	4-C1	+254.3	+255	.9 + 2	51.2	-
	2-OMe	+250.9	+ 252	.2 + 2.	48.9	+248.7
	2-OH	+ 253.6	+256	.4 + 2	49.6	_
	2-Cl	+ 250.2	+ 251	.8 + 2	47.7	+244.1
CONMe ₂	sat. solutions $R = \text{none}$ 2-OMe 2-OH	Benzene + 277.5 + 276.2	CDCl ₃ + 274.4 + 256.3 + 255.3	Pyridine + 276.4 + 256.0 + 256.6	DMSO + 270.4 + 252.7 + 252.3	CD ₃ OD + 266.8 + 248.6 + 248.3
R CONMe ₂	sat. solutions	CONMe ₂ Benzene	CDCl ₃	Pyridine	DMSO	CD ₃ OD
	R = none	+ 282.3	+ 278.3	+ 280.5	+ 274.6	
	1-OMe	-	+276.5	+280.3 $+276.4$	+274.6 +270.8	+ 271.5 + 266.8
	1-OH	~	+278.3	+276.4	+270.8 $+271.0$	+266.8 +267.3
			, -, 0.3	215.0	T 4/1.0	T 401.3
	3-OMe	+278.8	+275.3	+277.5	+271.6	+267.5

Table 12. —cont.

Compound	Solution or state	Nitrogen s nitrometha	Notes			
R		CONHPh	-			(m)
CONHPh	sat. solutions	CDCl ₃	Pyridine	DMSO	CD ₃ OD	
CONTRI	$R = none$ $4-NMe_2$	+ 253.1	+ 250.8 + 254.7	+ 246.3 + 249.9	+ 247.1	
	4-OMe 4-OH	+ 254.8	+ 252.9 + 253.0	+ 248.1 + 248.4	+ 248.5	
	4-Me 4-Cl	+ 253.4 + 253.6	+ 252.0 + 251.2	+ 247.2 + 245.6	$+247.8 \\ +247.0$	
	4-NO ₂ 3-Me	, 20010	+248.0 +251.0	+ 244.0 + 246.1	7 2 . 7 . 0	
	3-Cl 2-OMe	+ 245.9	+ 250.4 + 245.0	+ 245.6 + 239.0	+ 240.7	
	2-OH 2-Me	+ 255.3 + 245.2	+ 248.9 + 243.5	+ 244.2 + 239.1	+ 246.7 + 239.1	
	2-Cl	+ 244.4	+ 242.4	+ 237.6	+ 238.4	
		PhCONH				(m)
R	sat. solutions	Pyridine	DMSO			
HNCOPh	R = none 4-NMe ₂ 4-OMe	+ 250.8 + 259.5 + 254.6	+ 246.3 + 253.2 + 248.1			

175

	4-OH 4-Me 4-Cl 4-NO ₂ 3-Me 3-Cl 3-NO ₂	+ 254.2 + 250.9 + 251.6 + 246.8 + 252.1 + 247.0 + 246.5 + 243.4 + 250.8 + 246.1 + 251.1 + 246.5 + 251.9 + 246.7	
NH amido moieties in manumycin	in H ₂ O	+ 227.5 (C-2"-N) + 237.6 (C-1'-N)	(n) (n)
Amide polymers Poly(oxoamides) —[NH—(CH ₂) _n —1 $n = 2$ $n = 3$ $n = 4$ $n = 6$ $n = 12$ $n = 2$ and 3 (alternating) $n = 2$ and 4 (alternating) $n = 2$ and 6 (alternating) $n = 2$ and 12 (alternating)	NH—CO—CO—] _x — in CF₃COOH	+ 265.3 + 261.3 + 259.3 + 257.9 + 257.0 + 265.2, + 261.3 + 265.2, + 259.3 + 265.2, + 257.8 + 265.1, + 256.9	(0)
poly(p-benzamide)	$\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}_n$ solid state	+ 252.6	(f)
poly(p-benzamide-alt-caproamide)	solid state in H ₂ SO ₄	+ 246.7, + 267.4 + 230.2, + 235.3	(f) (f)

Table 12. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
nylon-6	in CF ₃ COOH solid state	+ 259.2	(h)
	α-crystal form	+ 263.8	(p)
	amorphous form	+ 260.2	(p)
	extracted with NaOH	+ 266.4 (isotropic)	(p)
		$+343 (\sigma_{11})$	(p)
		$+288 (\sigma_{22})$	(p)
		$+168 (\sigma_{33})$	(p)
nylon-6 (annealed)	solid state	+ 264.6	$(\bar{\mathbf{f}})$
	in H_2SO_4	+ 234.5	(f)
nylon-6 (quenched)	solid state	+ 264.2, + 259.2	(f)
,	in H ₂ SO ₄	+ 234.5	(f)
3-arm star nylon-6	solid state	+ 261.0	(f)
•	in H ₂ SO ₄	+ 234.5	(f)
nylon-11	solid state		
•	α-crystal form	+263.8	(p)
	amorphous form	+ 261.3	(q)
Imide structures R—CO—NR	R—CO—R		
0 NH 20	in H ₂ O	+ 218	(r)
	in H ₂ O, its K ⁺ salt	+ 322	(r)
W(CO) ₅			
	in CH ₂ Cl ₂	+ 239	(r)

in acetone in
$$H_2O$$
, its Na^+ salt $+276$ (r)

$$H_2O$$
, its Na^+ salt $+262$ (it)

$$H_2O$$
, its $Na^$

Table 12. —cont.

Compound	Solution or state	Nitrogen sh nitromethan	ielding (ppm) referred to neat e	Notes
Me I + OMe MeSO ₄	in CHCl ₃	+ 235.3		(e)
Me N+ OMe MeSO ₄	in CHCl ₃	+ 240.9 (Me + 282.5 (Me		(e) (e)
Thioamide structures R-C				
MeCSNH ₂ NR ₂	in H ₂ O	+ 272.9		(a)
MeCSNHPh	in CDCl ₃	+211.7(Z)		(u)
	-	+210.0 (E)		(u)
MeCSN(Me)Ph	in CDCl ₃	+215.4 +215.6 Z	E	(u) (u)
	0.4 м in DMSO	CSNH ₂		(1)
* *		para	meta	
CSNH ₂	$R = NMe_2$	+ 241.4	+ 232.8	
	$N = NNe_2$ NH_2	+ 241.4 + 242.1	+ 232.6 + 233.1	
	OMe	+ 235.9	+ 233.1 + 232.2	
	NHCOMe	+ 235.5	+ 232.2	
	Me	+ 234.1	+ 232.7	

	none F Cl Br I CONH ₂ CSNH ₂ COMe COOMe COOME	+ 232.5 + 232.7 + 231.8 + 231.9 + 232.2 + 231.0 + 231.2 + 230.1 + 229.8 + 229.6 + 229.0 + 228.1	+ 232.5 + 231.3 + 231.0 + 231.0 + 231.1 + 231.4 + 231.4 + 231.3 + 231.0 + 230.6 + 230.2 + 229.9		
III.duanamia add atmatuus D	NHOH		+ 223.9		
Hydroxamic acid structure R- MeCONHOH	0.67 m in DMSO	+ 209 (Z, m + 207 (E, m			(v) (v)
Sulphonamide structures R-S	SO ₂ —NR ₂				
MeSO ₂ NH ₂	in acetone	+ 288.7			(w)
MeSO ₂ NMe ₂	in DMSO	+ 300.7			(w)
	in CHCl ₃ in CF ₃ CH ₂ OH	+ 301.6 + 302.3			(w) (w)
R 1	2 mol% in DMSO	NH group			(x)
MeSO ₂ NH—		para	meta	ortho	_
R = none		+ 257.3	+ 257.3	+ 257.3	_
	(in acetone)	+260.0	+260.0	+ 260.0	(w)
OMe		+260.8			, ,
Me		+260.3	+257.8	+265.1	
2,6-Me ₂				+271.2	
Cl		+ 256.7	+ 256.5	+ 264.9	
Br		+ 257.6		+ 261.0	
OSO ₂ Me		+ 257.0	. 255.0	. 265.2	
NO_2		+ 250.8	+ 255.9	+ 265.3	_

Compound	Solution or state	Nitrogen sh nitromethar	Notes		
MeSO ₂ NPh ₂	in acetone		+ 281.5		(w)
R		NH group			
SO ₂ NH ₂		para	meta	ortho	_
R = none	in DMSO	+ 285.7 + 284.3	+ 285.7 + 284.3	+ 285.7 + 284.3	(x) (w)
	in acetone	+288.0	+288.0	+288.0	(w)
$R = NH_2$	in DMSO	+284.0	+285.8		(x) (x) (x)
$\mathbf{R} = \mathbf{OH}$	in DMSO	+284.6			(x)
R = OMe	in DMSO	+284.7			(x)
R = NHCOMe	in DMSO	+285.1			(x)
R = Me	in DMSO	+287.6			(w)
		+285.5	+285.7		(x)
	in acetone	+284.3			(w)
R = F	in DMSO	+285.2			(x)
$\mathbf{R} = \mathbf{C}\mathbf{I}$	in DMSO	+284.3			(w)
		+285.6	+285.6		(x)
	in acetone	+287.8			(w)
R = Br	in DMSO	+284.2			(w)
		+ 285.7			(x)
	in acetone	+287.8			(w)
R = CN	in DMSO	+286.0			(x)
$R = NO_2$	in DMSO	+ 284.4	+ 284.6		(w)
2 . 2		+ 285.8	+285.6		(x)
R = COOH	in acetone	+ 288.4	+ 288.3	+285.6	(w)
	in DMSO	+ 285.9	, 200.5	, 250.0	(x)

Table 12. —cont.

181

Table 12. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me—SO ₂ NHSiMe ₃	in CDCl ₃	+283.1	(A)
PhSO ₂ N Me	in CHCl ₃	+ 94.4 (NMe)	(B)
PhSO ₂ N H	in DMSO	+ 196.2	(B)
SOCI PhSO ₂ N Me	in CHCl ₃	+217.6	(B)
PhSO ₂ N Me	in CHCl,	+ 260.0	(B)
Sulphinamide structures R—SO—NR ₂ MeSONH ₂	in acetone	+ 285.4	(w)
	neat liquid in acetone	+ 302.7 + 303.4	(w) (w)
	neat liquid in acetone in CHCl ₃ in DMSO in PhCH ₂ OH in MeOH	+ 308.9 + 309.2 + 309.5 + 309.0 + 309.9 + 310.0	(w) (w) (w) (w) (w) (w)

	in CCl ₃ CH ₂ OH	+ 310.1	(w)
	in CF ₃ CH ₂ OH	+ 311.1	(w)
	in (CF ₃) ₂ CHOH	+ 312.0	(w)
PhSONMe ₂	neat liquid	+ 305.1	(w)
Sulphenamide structures R—S—NR ₂	neat liquid	+ 335.1	(w)
PhSNMe ₂	in CHCl ₃	+ 334.4	(w)

- (a) See ref. 5, pp. 336-350, and references therein.
- (b) Data from ref. 203, 40.6 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported originally vs fictitious ammonia standard taken at + 380.2 ppm from neat nitromethane (the latter value refers actually to a perpendicular field-to-sample axis arrangement, Table 2); we retrieved the original data.
- (c) Data from ref. 1072, 6.41 MHz ¹⁴N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane via a calibrated sample of aqueous NH₄Cl, uncorrected for bulk susceptibility effects.
- (d) Data from ref. 1073, 9.04 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (e) Data from ref. 1074, 25.4 MHz¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
- (f) Data from refs. 359, 374 and 1075, 20.3 MHz¹⁵N solution spectra (field parallel to sample tube) and CPMAS spectra, referenced originally to NH₄⁺ in aqueous ammonium nitrate, + 359.6 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1); reported vs solid glycine, -11.3 ppm from the reference employed.
 - (g) Data from ref. 1076, 10.04 MHz 15N spectra, other details as in footnote (b); Cr(acac), added as a relaxation reagent.
- (h) Data from ref. 1077, 40.6 MHz¹⁵N spectra (NOE-suppressed), field parallel to sample tube, referenced originally to liquid ammonia, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (i) Data from ref. 889, 10.04 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
- (j) Data from refs. 1054 and 1056, 9.04 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to liquid ammonia (at + 380.2 ppm from neat nitromethane) via a calibrated sample of aqueous ammonium nitrate, conversion scheme IIIa (Table 1).
- (k) Data from ref. 512, 36.506 MHz¹⁵N DEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (l) Data from ref. 509, 20.22 MHz¹⁵N INEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; actually, only unsubstituted benzamide nitrogen shielding was calibrated as above, shieldings of the derivatives were measured by frequency readout upon sample replacement.

- (m) Data from refs. 890 and 1078, ¹⁵N-labelled amido groups, 9.04 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to liquid ammonia, +380.2 ppm from neat nitromethane (uncorrected, Table 2), conversion scheme Ha (Table 1).
- (n) Data from ref. 878, ¹⁵N-labelled sample (by feeding *Streptomyces parvus* with labelled glycine), spectrometer not reported, ¹⁵N spectra referenced to saturated aqueous NH₄Cl, +252.9 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
- (o) Data from ref. 1079, 9.12 MHz¹⁵N spectra, field perpendicular to sample tube, referenced originally to NO₃ in aqueous ammonium nitrate, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (p) Data from refs. 327, 368-371, and 1006, ¹⁵N-labelled samples, 20.287 MHz ¹⁵N CPMAS and powder spectra, referenced to solid glycine, + 348.0 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects.
- (q) Data from ref. 372, details as in footnote (p).
- (r) Data from ref. 1080, 10.09 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to saturated aqueous NaNO₃, + 3.7 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (s) Data from refs. 155 and 413. ¹⁵N-labelled imide, 15.24 MHz ¹⁵N CPMAS spectrum, referenced originally to solid ammonium sulphate, +355.7 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects; also ¹⁵N solution spectrum at the same frequency; ³¹P-¹⁵N coupling was observed across P—Au—N.
- (t) Data from ref. 443, ¹⁵N-labelled and unlabelled samples, 30.4 MHz ¹⁵N CPMAS spectra, referenced originally to solid ammonium sulphate, + 355.7 ppm from neat nitromethane (Table 2), conversion scheme III (Table 1).
- (u) Data from ref. 1081, 8.059 MHz 15 N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported vs liquid ammonia standard taken at +380.2 ppm from neat nitromethane.
- (v) Data from ref. 787, 27.4 MHz¹⁵N proton-coupled spectrum, field parallel to sample tube, referenced originally to nitromethane +20% C₆D₆, ca. +0.2 ppm from neat nitromethane (Table 2).
 - (w) Data from refs. 770, 1082, 1083 and 1084, details as in footnote (i); concentrated (ca. 50 mol%) solutions.
- (x) Data from ref. 1085, 20.28 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane via a calibrated sample of aniline; originally reported vs fictitious ammonia standard taken at +380.2 ppm from neat nitromethane, see comments in footnote (b).
- (y) Data from ref. 761, ¹⁵N-labelled samples, 40.56 MHz ¹⁵N spectra (proton-coupled), field parallel to sample tube, referenced originally to NO₃⁻, probably in aqueous NaNO₃, +3.5 ppm from neat niromethane (Table 2), conversion scheme IIb (Table 1).
- (z) Data from ref. 1086, ¹⁵N-labelled sulphonamide moiety, 8.059 MHz¹⁵N spectra (proton-coupled), field perpendicular to sample tube, referenced originally to NH₄⁺ in aqueous ammonium nitrate, + 359.6 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (A) Data from ref. 154, 36.5 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (B) Data from ref. 515, details as in footnote (e).

Table 13. Nitrogen shieldings in amino acids, peptides proteins, and related structures

Substance and its state	Nitrogen shield (ppm) referred nitromethane		Notes		
Free amino acids		See ref. 5, p. 365 and references therein			
Free amino acids from cell suspensions	+ 255.2 + 261.1 amido	+255.2 amido-moieties			
of green alga Chlorella fusa (ca. 10^{8} cells/ml in $H_{2}O$)	+ 266.5 (γ-Gln) + 294.4 (δ-Arg) + 307.0 (ω,ω'-A + 313.4 (Pro) + 335.7 (Ala) + 337.8 (Glu) + 338.1 (Gln) + 340.3 (Ser)				
Histidine	+ 346.2 (Lys)				
$(\delta_1) \qquad (\epsilon_2) \qquad (\delta_1) \qquad (\delta_1) \qquad (\epsilon_2) \qquad (\delta_1) \qquad (\delta_1) \qquad (\delta_1) \qquad (\epsilon_2) \qquad (\delta_1) \qquad (\delta_2) \qquad (\delta_1) \qquad (\delta_1) \qquad (\delta_2) \qquad (\delta_1) \qquad (\delta_1) \qquad (\delta_2) \qquad (\delta_1) \qquad (\delta_2) \qquad (\delta_2) \qquad (\delta_1) \qquad (\delta_2) \qquad (\delta_2$	$ \begin{array}{c} (\delta_1) & (\epsilon_2) \\ N & NH \\ R \end{array} $				
$R = -CH(NH_1^+)COO^-$	N_{δ_1}	N_{ϵ_2}			
in H_2O , protonated	+ 205.2	+ 208.3	(b)		
in H_2O , neutral species	∫ + 148.0	+203.1	(b)		
in 1170, neutral species	(+188.7)	+ 161.5	(b)		
in 80% EtOH, protonated	+ 203.6	+206.2	(b)		
in 80% EtOH, δ_1 -NH tautomer	+213.1	+ 136.4	(b)		
in 80% EtOH, ε_2 -NH tautomer	+ 133.4	+216.0	(b)		
δ_1 -N-Me-histidine	1 200 4	1 200 0	(b)		
in H_2O , protonated in H_2O , neutral species	+ 208.4 + 215.6	+ 208.8 + 139.2	(b) (b)		
ε_2 -N-Me-histidine	1 210.0	1 107.2	(0)		
in H_2O , protonated	+ 202.8	+209.4	(b)		
in H_2O , neutral species	+133.4	+217.0	(b)		
His-57 in Asp-His-Ser triad of α-lyti	ic protease				
in H ₂ O, protonated	+ 196.4	+ 209.0	(b)		
neutral species	+ 204.2	+ 142.8	(b)		
in H ₂ O + phenylmethanesulphonyl protonated	+ 212.8	+ 206.3	(b)		
neutral species	+ 204.5	+132.4	(b)		

Table 13. —cont.

	Nitrogen shieldi		
Substance and its state	(ppm) referred t	o neat	Notes
in H_2O + diisopropylfluorophosp		1 204 0	(L)
protonated	+ 203.3	+ 206.9	(b)
neutral species	+210.7	+ 137.8	(b)
in H_2O , complexed with peptide by			(a)
Boc-Ala-Pro-boroVal-OH	+ 198.5	+ 195.1	(c)
pH = 4 $pH = 9$	+ 198.6	+ 195.9	(c)
pri = 9 MeOSuc-Ala-Ala-Pro-boroVo	al OU		
	+ 198.0	+ 195.7	(a)
pH = 4	+ 198.0 + 198.2	•	(c)
$pH = 9$ $M = OS_{\text{tot}} A \ln A \ln B \ln B \ln b \ln B \ln A$	· ·	+ 195.5	(c)
MeOSuc-Ala-Ala-Pro-D,L-boroAl		. 104.4	(a)
pH = 4	+ 198.4	+ 196.6	(c)
pH = 9	+ 198.3	+ 197.2	(c)
Ac-Pro-boroVal-OH	, 100 A	1067	(2)
pH = 4	+ 198.4	+ 196.7	(c)
pH = 9	+ 198.5	+ 196.4	(c)
MeOSuc-Ala-Ala-Pro-D,L-ba		. 171 1	(-)
pH = 4	+ 202.4	+ 171.1	(c)
pH = 9	+ 202.4	+ 171.1	(c)
Boc-Ala-Pro-D-boroVal-OH	1 201 6	. 171.2	(a)
pH = 9	+201.6	+ 171.2	(c)
Benzeneboronic acid			
pH = 9	+ 201.9	+ 171.2	(c)
solid state, complex with			
(MeOSuc-Ala-Ala-Pro-boroPh			
His-57 and His-51	+ 202.2	+ 170.4	(d)
amide backbone	+ 2	59	
lyophilized solid state,			(e)
64% w/w suspension in solvent			(-)
o , , o, = F David	(.	201	
δ_1 -His, in acetone, $pH = 8.6$	\ +	201 259	
.,,, , ,	(+	259	
C 77.	(,	104	
δ_1 -His, in acetone,	\ +	124 259	
reclaimed from DMSO	(+	239	
		(. 104	
$\delta_{I}, \varepsilon_{2}$ -His, in acetone,		1 + 194	
reclaimed from DMSO		7 + 202	
Bu ₃ P H ₂ N—CNR		(+239	
Pt 17211			
cı o—c,			(f)
`0			
R = H (glycine) in CL	$Cl_3 + 402.$	7 (singlet)	
	4SO + 387.	6 (doublet)	

Table 13. —cont.

Substance and its st	ate	(pp:	rogen shielding m) referred to ne omethane	eat	Notes
$ \begin{array}{c c} \hline Cl & H_2N - CH_2CC \\ Cl & PBu_3 \end{array} $		acetone	+ 401.1 (da	oublet)	(f)
$CI \longrightarrow PI \leftarrow O \longrightarrow CH_2$ $Bu_3P \longrightarrow PI \leftarrow O \longrightarrow C$ $O \longrightarrow C$ $O \longrightarrow O$	in	CDCl ₃	+ 244.1 (d	oublet)	(f)
H ₂ N-CH ₂ -CO-6 (5-aminolevulinic ac in H ₂ O					(g)
рĤ 2			+ 354.9		
pH 7			+ 355.0		
pH 11.6 in H₂O, adduct wi	ith hydroxy	lamine	+368.4		
Schiff base	iin nyuroxy	iumini.			
pĤ 7			+ 352.2		
pH 9.7		_	+362.2		
in H_2O , adduct wi	ith hydroxy	lamine			
Schiff base			+ 352.9		
pH 7 pH 9.7			+ 360.2		
ALA bound to poi	rphibilinoge	n synthetase	1 300.2		
Schiff-base com		,	+356.3		
нооссн ₂ Сн	2CH2COOH				
H ₂ NCH ₂ N H		(porphobi	linogen, PBG)		(g)
in H_2O			9.0 (NH) 0.1 (NH ₂)		
in D_2O		+ 230	0.9 (NH) 3.4 (NH ₂)		
N-acetyl-amino acid	s Ac-N moie	ties			(h)
in DMSO	Ala (A)	+ 256.2	Leu (L)	+ 258.6	
	Arg (R)	+ 255.8	Lys (K)	+ 256.4	
	Asn (N)	+258.7	Met (M)	+260.3	
	Asp (D)	+ 260.3	Phe (F)	+ 259.6	
	Cys (C)	+ 261.3	Pro (P)	+ 249.5	
	Gln (Q) Glu (E)	+ 258.2 + 259.9	Ser (S) Thr (T)	+ 264.9 + 270.0	
	C.u (L)	T 437.7	1111 (1)	T 4/0.0	

Table 13. —cont.

Substance a	and its sta	te		(ppn		nielding red to ne ne	at		Note
	ŀ	Gly (G) His (H) le (I)	+	- 271.2 - 258.7 - 261.3	Ty	p (W) r (Y) l (V)	+ 258.3 + 258.5 + 262.6		
Bovine pan	creatic try			BPTI, a de nitro			ein)		(i)
in H ₂ O,	pH = 4.6		D3 F4 C5 L6 E7 Y10 T11 G12 C14 K15 A16 R17 I18 I19 R20 Y21 F22 Y23	+ 258.3 + 266.0 + 261.0 + 267.7 + 261.1 + 258.8 + 254.6 + 274.8 + 264.0 + 266.4 + 258.2 + 263.6 + 253.5 + 252.1 + 266.0 + 261.7 + 256.8	A25 K26 A27 G28 L29 C30 Q31 T32 F33 V34 Y35 G36 G37 C38 R39 A40	+ 256.1 + 255.1 + 265.2 + 263.4 + 275.0 + 267.3 + 263.1 + 258.7 + 273.0 + 262.5 + 263.0 + 252.0 + 267.8 ? + 266.7 + 268.4 + 263.6 + 260.7	K46 S47 A48 E49 D50 C51 M52 R53 T54 C55 C56 G57	+ 266.1 + 265.5 + 260.6 + 259.3 + 261.4 + 273.1 + 256.3 + 262.1 + 262.1 + 260.6 + 261.4 + 268.4 + 267.1 + 274.1 + 273.1 + 252.4	
Apamin in H ₂ O	Peptide	nitrogen a	toms	I 3.4	pH 4.0		1 + 2x	1 NaCl	(i)
	Cys-1 Asn-2 Cys-3 Lys-4 Ala-5 Pro-6 Glu-7 Thr-8 Ala-9 Leu-10 Cys-11 Ala-12 Arg-13 Arg-14 Cys-15 Gln-16 Gln-17 His-18	? + 254.5 + 261.4 + 262.1 + 262.0 ? + 259.7 + 274.5 + 262.5 + 264.8 + 258.4 + 264.4 + 261.2 + 265.2 + 262.5 + 262.4 + 262.3	+++++++++++++++++++++++++++++++++++++++	? 253.2 261.5 262.3 262.0 ? 258.6 275.4 255.7 262.4 264.2 258.7 264.2 260.8 265.0 262.7 262.6	? + 252 + 261 + 262 + 262 ? + 257 + 276 + 261 + 264 + 264 + 265 + 265 + 262 + 263	? 3 + 25 9 + 26 5 + 26 1 + 26 ? 9 + 25 1 ? 0 + 25 9 + 26 7 + 26 1 + 25 3 + 26 0 + 26 2 + 26 9 + 26	53.4 52.1 52.2 52.7 58.1 55.0 52.1 55.1 58.8 64.3 61.1 65.5 52.7	77.7.7	

Table 13. —cont.

						shielding	4		
Substance a	nd its .	state			om) rei rometh	erred to n	eat		Notes
Staphylococ	cal nu	clease (N	ace) fr	om Faaba	niahia	a a li			110100
~pjococ	Pept	ide nitrog	gen ato	om <i>Esche</i> oms	пста (con			(j)
in H_2O ,	_		T41	+ 262.3	D 9 1	+ 261.7	LI121	1 269 7	(3)
pH = 7.4			P42	?	T82	+ 201.7	E122	+ 268.7 ?	
•			E43	?	D83	+ 260.3		?	
			T44	?	K84	?	H124	+ 261.8	
			K45	?	Y85	+261.3		+263.7	
	K6	?	H46	+256.4		+272.6		+ 263.3	
	L7	+259.7		?	R87	+260.3	K127	+259.6	
	H8	+262.3		?	G88	+273.6		+263.9	
	K9	+258.0		?	L89	+255.8		+256.8	
	E10	+258.7	G50	+272.8	A90	+261.8	A130	+262.3	
	P11	?	V51	+259.6	Y 91	+259.2	Q131	+263.6	
	A12	+261.9	E52	+255.1	I92	+259.9	A132	+258.9	
	T13	+273.1		+256.3	Y93	+255.6	K133	+264.7	
	L14	+256.8		+266.1	A94		K134	+259.6	
	I15	+ 257.3		+273.5		+ 254.4		+265.3	
	K16	+ 267.5		?	G96	+ 278.8		+265.3	
	A17 I18	+ 252.5		?	K97	+ 260.6		+ 264.8	
	D19	+257.6 +262.9		+257.7 +270.2	M98 V99	+ 255.3		+ 263.3	
	G20	+202.9	A60	+270.2 $+259.6$		+245.7 +273.7		+257.5 +262.7	
	D21 T22	+ 270.1	F61	+ 260.5		+ 269.3	S141	+265.7	
	V23	+264.3 +261.2		+261.6 +261.8		+ 258.8			
	K24	+251.2		+261.6		+266.4 + 264.9			
	L25	+254.6		+265.6		+259.4			
	M26	+259.8		+ 274.1	Q106	+269.8			
	Y27		E67	+ 260.7	Q107	+ 275.1			
	K28	+254.4		+ 268.5	L108	+ 266.6			
	G29	+279.5	A69	+260.6	A109	+268.8			
	Q30	+262.6	K70	+256.3	K110	+264.6			
	P31	?	K71	+ 260.5	V111	+ 257.8			
	M32		I72		A112	+ 250.6			
	T33	+257.7	E73	+258.6	Y113	+271.6			
	F34	+256.1	V74		V114	+262.5			
	R35		E75	+255.1	Y115	+251.4			
	L36		F76	+ 255.3		?			
	L37	+ 260.0		+ 258.7		?			
	L38	+ 270.3			N118	+253.3			
	V39 D40	+278.1	G79	+ 271.1	N119	+ 264.2			
	D40	+ 262.7	Q80	+ 257.1	T120	+257.7			

Table 13. —cont.

		(ppm	ı) refer	nielding red to ne	at		
Substance and it	s state	nitro	metha	ne			Notes
Ferrocytochrome 0.002 m in	Peptide nitro	dobacter capsul gen atoms	atus				(k)
$H_2O, pH = 6$	G1 ?	A31 + 256.5	G61	+271.0	K91	+ 263.4	
	D2 + 258.4	· ·	A62	+ 255.5	A92	+ 257.6	
	A3 + 252.5		S63	+ 268.4	K93	+ 263.0	
		G34 + 276.9	G64	+ 270.8	S94	+ 265.2	
	K5 + 261.1		F65	+259.0	G95	+ 284.1	
	G6 + 272.2		A66	+ 250.2	M96	+ 255.6	
	E7 + 257.6		W67		A97	+ 246.4	
		Y38 + 257.7	T68	+ 269.4	F98	+ 261.1	
		G39 + 263.6	E69	+258,3	K99	+ 260.9	
	F10 + 263.2		E70	+ 262.9	L100	+ 257.4	
		•					
	N11 + 263.3	·	D71	+ 262.3	A101	+ 251.5	
		G42 + 262.7	172	+ 260.0	K102	+ 266.4	
		R43 + 256.0	A73	+ 261.1	G103	+ 271.4	
	K14 + 261.1		T74	+ 267.0	G104	+ 269.1	
		A45 + 246.5	Y75	+ 255.4	E105	+ 260.5	
		G46 + 274.5	V76	+ 272.8	D106	+ 258.2	
		T47 + 278.2	K77	+ 262.2	V107	+ 259.4	
		Y48 + 250.9	D78	+275.3	A108	+ 257.2	
	119 + 262.5		P79	?	A109	+ 261.7	
	120 + 251.4	E50 + 266.2	G80	+ 276.8	Y110	+260.8	
	A21 + 250.7	F51 + 259.4	A81	+257.1	L111	+261.3	
	P22 ?	K52 + 252.3	F82	+262.7	A112	+261.2	
	D23 + 267.3	Y53 + 254.1	L83	+263.4	S113	+267.9	
	G24 + 272.4		K84	+264.6	V114	+265.5	
	T25 + 262.9		E85	+ 262.8	V115	+265.6	
	E26 + 252.0	S56 + 263.9	K86	+263.2	K116	+250.9	
	127 + 251.2		L87	+265.5			
	V28 + 265.2		D88	+260.3			
	K29 + 250.8		D89	+266.4			
	G30 + 264.2	L60 + 260.3	K90	+256.7			
Cytochrome c^{553}							(o)
in H_2O	Ala $+ 263.1$	1, +264.8, +2	56.0				
	His $+223.4$	4, +208.5 (ring	g)				
Calmodulin fron	n <i>Drosophila</i>						(1)
0.0015 m in	Peptide nitro	gen atoms					` ′
H_2O_1							
complexed	A1 ?	Q41 + 263.5		+265.2	V121	+261.1	
with Ca+2,	D2 + 261.4	N42 + 265.4		+261.0	D122	+262.3	
					D 1 0 0		
pH = 6.3	Q3 + 262.3 L4 + 259.1	P43 + 266.3 T44 + 269.3		+263.1	E123	+262.7	

Table 13. —cont.

0.1.	·	(pp	rogen shielding m) referred to n	eat		N T .
Substance and	its state	niti	omethane			Not
	T5 + 269	0.0 E45 + 261.	2 185 + 260.	6 I125	+263.7	
	E6 + 26	.4 A46 + 261.	4 R86 $+260$.	3 R126	+263.5	
	E7 + 262	6.6 E47 + 263.	3 E87 + 263.	5 E127	+266.1	
	Q8 + 262	1.1 L48 + 261.	7 A88 $+260$.	1 A128	+262.8	
	19 + 262	2.5 Q49 + 263.	8 F89 + 263.	4 N129	+264.6	i
	A10 + 260	0.6 D50 + 261.	9 R90 $+266$.	5 I130	+254.5	
	E11 + 262	3.3 M51 + 262.	9 V91 + 263.	8 D131	+ 264.8	
	F12 + 262	$1.3 ext{ I52} + 263.$		5 G132	+273.6	
	K13 + 258			0 D133	+261.3	
	E14 + 26	.7 E54 + 265.	5 K94 + 256.	1 G134	+269.7	
	A15 + 259	.7 V55 + 273.	D59 + 267.	7 Q135	+266.5	
	F16 + 262	.9 D56 + 260.	3 G96 + 272.5	8 V136	+256.7	
	S17 + 269	.5 A57 + 250.	2 N97 + 262.	5 N137	+252.9	
	L18 + 261		0 G98 + 269.	1 Y138	+263.7	
	F19 + 266	.9 G59 + 273.	7 F99 + 266.	3 E139	+263.7	
	D20 + 264	.4 N60 + 263.	$5 ext{ I100} + 254.6$	6 E140	+261.8	
	K21 + 257	.5 G61 + 268.	5 S101 + 258.	l F141	+ 257.9	
	D22 + 267	.9 T62 + 272.	A102 + 258.5	9 V142	+262.5	
	G23 + 272	.8 I63 +257.	A103 + 263.5	8 T143	+265.4	
	D24 + 261	.1 D64 + 253.	6 E104 + 262.	5 M144	+260.1	
	G25 + 268	$.8 ext{ } ext{F65} ext{ } ext{+ 262}.$	1.05 + 261	1 M145	+267.1	
	T26 + 269	.0 P66 + 264.	7 R106 + 264.6	5 T146	+271.9	
	127 + 254	.8 E67 + 264.	5 H107 + 263.	3 S147	+264.1	
	T28 + 265	.3 F68 + 258.6	5 V108 + 263.3	2 K 148	+254.2	
	T29 + 269	1 L69 + 263	M109 + 265.4	4		
	K30 + 261	.5 T70 + 267.	T110 + 267.	5		
	E31 + 260	.6 M71 + 260.	5 N111 + 260.9	0		
	L32 + 261		·			
	G33 + 276		•			
	T34 + 264					
	V35 + 259					
	M36 + 264	.0 M76 + 263.	5 L116 + 257.	7		
	R37 + 263			9		
	S38 + 263	.5 D78 + 260.				
	L39 + 261	.8 T79 + 267.9	E119 + 262.	1		
	G40 + 275	.5 D80 + 259.				
Bacteriophage 7						(m)
in $H_2O/$	reptide nii	rogen atoms				
D_2O , $nH = 5.6$	M1 + 342	0 A41 + 256.	N81 + 258.9	L121	+ 262.1	
$pH = 5.6, + 20^{\circ}C$	N2 + 265	· · · · · · · · · · · · · · · · · · ·			+ 260.0	
T 20 C	-	•	•	-		
	13 + 263	.0 K43 +264.0	K83 + 267.1	Q123	+267.1	

Table 13. —cont.

			gen shielding	_4		
Substance and its state	o		referred to ne nethane	at		Notes
<u> </u>						14010
E5	+ 262.7				+260.7	
M6	+ 262.6	L46 + 258.5			+262.1 +264.1	
L7 R 8	+ 262.9	D47 + 261.0			+260.1	
19	+258.0 +261.1	K48 + 259.9 A49 + 259.5			+258.3	
D10		150 + 266.1			+261.9	
E11	+ 262.9	G51 + 271.9			+ 262.6	
	+ 271.6	R52 + 264.6			+ 262.5	
L13	+ 261.8	N53 + 264.6			+258.7	
	+ 253.4				+ 261.3	
L15		N55 + 260.5			+ 262.6	
	+ 266.2	G56 + 278.8			+ 267.5	
I17	+260.2	V57 + 260.2			+ 257.2	
Y18					+ 260.2	
K 19		T59 + 271.7			+ 262.9	
D20		K60 + 259.3			+ 269.9	
T21	+ 270.7	D61 + 263.3	N101 + 262.0	Q141	+ 262.3	
E22	+260.6		M102 + 265.5		+274.2	
	+273.8		V103 + 260.6		?	
Y24			F104 + 256.9		+264.0	
	+257.8		Q105 + 263.7		+259.9	
T26			M106 + 267.7		+261.7	
127	+259.6		G107 + 269.3		+265.0	
	+268.6		E108 + 260.7		+261.3	
129	+ 249.9		T109 + 268.5		+255.8	
	+ 271.6		G110 + 271.5		+ 260.5	
H31	+ 264.3	V71 + 255.7	V111 + 259.0	T151	+ 263.1	
L32		D72 + 261.1	A112 + 262.1	T152	+258.7	
L33	+254.9		G113 + 279.1		+260.7	
T34	+271.0		F114 + 256.8		+261.8	
K35			T115 + 266.3		+276.7	
S36	+261.1		N116 + 261.7		+269.2	
P37	?		S117 + 262.2		+272.7	
S38	+264.5		L118 + 260.7		+263.1	
L39			R119 + 262.0		+261.1	
	+ 263.7		M120 + 264.2		+ 261.9	
	, 86, 143 <	+ 241.0		Y161	+ 267.2	
P37.	, 86, 143 <	+243.0		K162	+261.4	
		+ 246.9		N163	+264.1	
		`		L164	+255.1	

Table 13. —cont.

Substance and	l its state	(pp	rogen shielding m) referred to ne romethane	at	Notes
	Other nitro	gen atoms			<u>—</u>
	H31 W126 W138 W158	$+ 193.6 (N_{\delta} + 249.9 (N_{\epsilon} + 250.5 (N_{\epsilon} + 252.2 (N_{\epsilon}$	()		
$0.007\mathrm{M}$ in	odoxin from <i>Ai</i> Peptide nitro		s strain PC 7120 ((oxidized form)	(n)
H_2O , $ph = 7.1$	A1 + 341.1 T2 + 267.4 F3 + 257.2 K4 + 257.8 V5 + 252.8 T6 + 255.2 L7 + 253.5 I8 + 254.2 N9 + 255.2 E10 + 255.6 A11 + 259.1 E12 + 266.9 G13 + 271.5 T14 + 273.0 K15 + 258.2 H16 + 256.6 E17 + 256.6 E17 + 256.6 E18 + 260.8 E19 + 258.3 V20 + 254.5 P21 + 242.6 D22 + 264.2 D23 + 263.7 E24 + 259.1 Y25 + 260.6 Other nitroge K4 + 348.8 D9 + 270.1 H16 + 168.1 H93 + 138.8	$\begin{array}{c} 126 & +261.3 \\ 127 & +265.2* \\ 128 & +264.0 \\ 129 & +258.5 \\ 128 & +261.9 \\ 120 & +261.9 $	K53 + 251.6 V54 + 255.5 S55 + 269.2 G56 + 271.4 T57 + 274.5 V58 + 271.7 ?59 ? D60 + 260.0 Q61 + 256.8 S62 + 263.1 D63 + 261.6 Q64 + 258.2 S65 ? F66 ?* L67 + 259.5* D68 + 258.1 D69 + 263.9 D70 + 259.8 Q71 + 257.7 I72 + 259.8 E73 + 256.9 A74 + 261.4 G75 + 277.3		

Table 13. —cont.

Substance an	d its st	tate		(pp		shielding erred to no	eat		Mada
					- Ometin				Note
Anabaena 712 in H ₂ O	Ala		, +2 , +2	60.3, +25 63.2	9.8, +	253.3, +2	257.0,		(0)
	His	+204.4	, +1	50.4 (ring))				
Escherichia ce	<i>oli</i> thio	redoxin							(p)
0.001 to	Pept	ide nitrog	gen a	toms					(F)
0.005 M in H ₂ O	Arg,	R	+ 24	17.0					
in H ₂ O		D, N			88 -	255.9, +2	50.8	⊥ 255 Q	
	,	٥, ١,	+ 2	$\frac{71.3}{56.3} + 25$	13 ±	255.3, +2	50.0, -	r 233.9, ⊾ 255.3	
			+ 24	59.2 ± 24	60 ±	254.3, +2	59.2, -	- 233.3, - 262.6	
	Gly,	G	1 26	$(3.2, \pm 24)$	3.7 ±	271.2, +2	50.0, ·	1 260.2	
	Cij,	J	± 26	(1.2, +25	3.7, T.	267.1, +2	00.4, - 47 1	F 209.3,	
	His,	н	+ 24		D.J, +	207.1, +2	67.1		
	Ile, I				01.	253.7, +2	527		
	110, 1		T 2.	() 1 1 25	20 +	233.1, +2	33.1,	3500	
	Leu,	ī	+ 20	12.1, + 23.).9, +.	265.6, +2	30.4, -	+ 258.U	
	Leu,	L	1 2	10.3, + 244 10.0 + 25	+./, +.	253.3, +2	31.3, -	F 232.1,	
						255.1, +2	<i>33.9</i> , -	F 233.9,	
	Met,	M		6.3, +25	9.2, +	233.8			
	Phe,		+ 25		44	2550 12	50.1		
	Tyr,					255.9, +2	5 0.1		
	Val,			60.0, +260		2521 . 2	40.4	261.2	
	v a1,	<u> </u>		J.6, + 246	5.0, +2	252.1, +2	49.4, -		
Turkey ovom	ucoid	third don	nain	OMTKY	3)				(q)
					3)				(4)
$0.05\mathrm{M}$ in	Penti	ide nitrog							
	Pepti	ide nitrog							
$0.03 \mathrm{M}$ in H_2O/D_2O				?	S26	+263.9	T30	+ 268.9	
		+ 274.5 + 268.7	E19	?	S26 D27	+263.9 +258.7	T30 Y31	+ 268.9 + 257.8	
	A15	+ 274.5	E19 Y20			+263.9 +258.7	Y31	+257.8	
	A15 C16	+ 274.5 + 268.7	E19 Y20 R21	?	D27	+258.7		+ 257.8 + 264.4	
H_2O/D_2O	A15 C16 T17 L18	+ 274.5 + 268.7 + 265.4 + 275.5	E19 Y20 R21 G25	? + 263.0 + 262.1	D27 N28	+258.7 ?	Y31 G32	+257.8	
H_2O/D_2O	A15 C16 T17 L18	+ 274.5 + 268.7 + 265.4 + 275.5	E19 Y20 R21 G25	? + 263.0 + 262.1	D27 N28	+258.7 ?	Y31 G32	+ 257.8 + 264.4	
H_2O/D_2O	A15 C16 T17 L18	+ 274.5 + 268.7 + 265.4 + 275.5	E19 Y20 R21 G25	? + 263.0 + 262.1	D27 N28	+258.7 ?	Y31 G32	+ 257.8 + 264.4	(r)
H_2O/D_2O Pf1 filamento in H_2O , $pH = 4.3$,	A15 C16 T17 L18	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog	E19 Y20 R21 G25 ge coa	? + 263.0 + 262.1 at protein	D27 N28 K29	+258.7	Y31 G32 N33	+ 257.8 + 264.4 + 264.5	
H_2O/D_2O Pf1 filamento in H_2O ,	A15 C16 T17 L18 ous bac Pepti	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog	E19 Y20 R21 G25 ge coagen at	? + 263.0 + 262.1 at protein toms + 267.1	D27 N28 K29	+258.7 ? ? +264.6	Y31 G32 N33	+ 257.8 + 264.4 + 264.5 + 266.8	
H_2O/D_2O Pf1 filamento in H_2O , $pH = 4.3$,	A15 C16 T17 L18 us bac Pepti L30 V31	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog + 270.0 + 268.9	E19 Y20 R21 G25 ge coagen at	? + 263.0 + 262.1 at protein toms + 267.1 + 266.0	D27 N28 K29 A36 G37	+ 258.7 ? ? + 264.6 + 281.7	Y31 G32 N33	+ 257.8 + 264.4 + 264.5	
H_2O/D_2O Pf1 filamento in H_2O , $pH = 4.3$,	A15 C16 T17 L18 ous bac Pepti	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog	E19 Y20 R21 G25 ge coagen at	? + 263.0 + 262.1 at protein toms + 267.1 + 266.0	D27 N28 K29	+258.7 ? ? +264.6	Y31 G32 N33	+ 257.8 + 264.4 + 264.5 + 266.8	
H_2O/D_2O Pf1 filamento in H_2O , $pH = 4.3$, $+75^{\circ}C$	A15 C16 T17 L18 Sus bace Peptit L30 V31 I32	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog + 270.0 + 268.9 + 267.9	E19 Y20 R21 G25 ge coa gen at L33 A34 V35	? + 263.0 + 262.1 at protein toms + 267.1 + 266.0	D27 N28 K29 A36 G37	+ 258.7 ? ? + 264.6 + 281.7	Y31 G32 N33	+ 257.8 + 264.4 + 264.5 + 266.8	(r)
H_2O/D_2O Pf1 filamento in H_2O , $pH = 4.3$, $+75^{\circ}C$ Coliphage λ - α	A15 C16 T17 L18 us bac Pepti L30 V31 I32	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog + 270.0 + 268.9 + 267.9	E19 Y20 R21 G25 ge coa gen at L33 A34 V35	? + 263.0 + 262.1 at protein toms + 267.1 + 266.0	D27 N28 K29 A36 G37 L38	+ 258.7 ? ? + 264.6 + 281.7 + 262.0	Y31 G32 N33	+ 257.8 + 264.4 + 264.5 + 266.8	
H_2O/D_2O Pf1 filamento in H_2O , $pH = 4.3$, $+75^{\circ}C$	A15 C16 T17 L18 us bac Pepti L30 V31 I32	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog + 270.0 + 268.9 + 267.9	E19 Y20 R21 G25 ge coa gen at L33 A34 V35	? + 263.0 + 262.1 at protein toms + 267.1 + 266.0 + 269.7	D27 N28 K29 A36 G37 L38	+ 258.7 ? ? + 264.6 + 281.7 + 262.0	Y31 G32 N33 I39 Y40	+ 257.8 + 264.4 + 264.5 + 266.8 + 266.7	(r)
H_2O/D_2O Pf1 filamento in H_2O , $pH = 4.3$, $+75^{\circ}C$ Coliphage λ - α	A15 C16 T17 L18 us bac Pepti L30 V31 I32	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog + 270.0 + 268.9 + 267.9	E19 Y20 R21 G25 ge coa gen at L33 A34 V35	? + 263.0 + 262.1 at protein toms + 267.1 + 266.0	D27 N28 K29 A36 G37 L38	+ 258.7 ? ? + 264.6 + 281.7 + 262.0	Y31 G32 N33 I39 Y40	+ 257.8 + 264.4 + 264.5 + 266.8 + 266.7	(r)
H_2O/D_2O Pf1 filamento in H_2O , $pH = 4.3$, $+75^{\circ}C$ Coliphage λ - c	A15 C16 T17 L18 us bac Pepti L30 V31 I32	+ 274.5 + 268.7 + 265.4 + 275.5 teriophagide nitrog + 270.0 + 268.9 + 267.9	E19 Y20 R21 G25 ge coagen a L33 A34 V35	? + 263.0 + 262.1 at protein toms + 267.1 + 266.0 + 269.7	D27 N28 K29 A36 G37 L38	+ 258.7 ? ? + 264.6 + 281.7 + 262.0	Y31 G32 N33 I39 Y40	+ 257.8 + 264.4 + 264.5 + 266.8 + 266.7	(r)

Table 13. —cont.

			rogen shielding om) referred to neat	
Substance and its si	tate		romethane	Notes
	+	266.0	?	
		264.6	-0.37	
	+	271.2	-0.03	
	+	263.9	-0.06	
		261.4	-0.14	
	<u>+</u>	260.5		
Human N-ras p21 j				(t)
in H_2O , $pH=7$.	5 No	rmal p	21 Mutant p21	<u></u>
		?	?	
		255.4	+ 254.9	
		271.6	+ 270.9	
		267.9	+ 266.9	
		266.4	+ 265.9	
		274.9	+ 262.3	
		? 272 0	?	
	G10/G115 +:		+ 273.6	
	G115/G10 + :	255.7	+ 267.8 + 255.2	
Ribonuclease A (RI N-terminal penta- moiety ("S-peptic in H ₂ O, pH 6.02 Synthetic S-peptic	decapeptide le") units 1-15,	+ 2 + 2 + 2		(u)
with RNaseS' (R)			$07.1 \text{ (His-12, N}_{\delta_1})$	
in H ₂ O, values from			06.9 (His-12, N_{ϵ_2})	
sources for cation Synthetic S-peptic in H ₂ O, pH 5.0	ic species	, -	(,,,,, .	
with 2'-CMP		± 2	63.6 (Gln-11, γ-amide)	
2 0			99.7 (His-12, N_{δ_1})	
		+ 2	06.1 (His-12, N_{ϵ_2})	
with 3'-CMP			64.8 (Gln-11, γ-amide)	
		+ 2	04.3 (His-12, N_{δ_1})	
		+ 20	06.2 (His-12, $N_{\epsilon_2}^{(1)}$)	
with 5'-AMP		+ 2	65.5 (Gln-11, γ-amide)	
			03.7 (His-12, N_{δ_1})	
		+ 20	07.3 (His-12, N_{t_2})	
Streptomyces subtili	sin inhibitor (SS)	()	.20 0 71	(v)
in H_2O	+25	/.1 (Me	et^{70} – Cys ⁷¹)	
	+259	9.4 (Me	$et^{73}-Val^{74}$)	
	+ 264	4.4 (Me	$et^{103}-Asn^{104})$	

Table 13. —cont.

Substance and i	ts state		Nitrogen s (ppm) refer nitrometha	rred to neat	_	Notes
Silk fibroins	from B	ombyx mor	i	from Philos	amia	(w)
in H ₂ O	+256.3 +260.1 +264.3 +269.3	5 (Ala) 5 (Tyr) 7 (Ser) 8 (Ser-Gly-A) 1 (Ala-Gly-A) 1 (Ala-Gly-A)	Ala) Ser,	cynthia ricir +256.6 (Al +258.6 (Al +260.2 (Ty +264.8 (Se +269.5 (Gl +270.1 (Gl +271.9 (Gl	ii a) a) r) r) y) y)	
		-		+273.4 (Gl	y)	
Aridicin aglycor	า					(x)
MeNH CO HO	OH CO	TH CQ NH SCI	HOOC NH CO	t)		
in 1:1 H ₂ O/. Free		nplexed	Free +	Complex	ed	
		tripeptide			tapeptide	
$\overline{NH(a)}$ +2	74.6 + 2	74.6	+ 274.6	+275.2		
NH(b) + 2c	61.9 + 26	64.2	+262.1	+264.3		
NH(c) + 2	•	68.5	+272.2	+268.5		
NH(d) + 2	-	51.9	+253.7	+253.4		
$ \begin{array}{ccc} NH(e) & +26 \\ NH(f) & +26 \end{array} $		56.3 57.7	+258.1 +261.8	+256.4 +257.6		
tripeptide = di pentapeptide = Gramicidin A	-N-Ac—L-L N-Ac—L-A	ys—D-Ala- Ala—γ-D-G	-D-Ala In-L-Lys(A	c)—p-Ala—p		
HCO—L-Val—					1.	
	НО	CH ₂ CH ₂ —	NH—L-Trp-	−D-Leu−L-T	rp—D-Leu	
0.05 m in DM	G2 A3 L4	+255.7 +270.7 +259.0 +262.0	V7 +2 V8 +2 W9 +2	67.7 W11 63.3 L12 63.6 W13 57.7 L14	+259.2 +258.8 +259.2 +258.1	(y)

 $NHCH_2CH_2OH + 269.3$

A5 +259.6 L10 +258.6 W15 +269.3

Table 13. —cont.

Substance and its	state		(pp	rogen s m) refe ometha	shielding rred to ne ane	eat		Notes
solid state		isotropic	σ_{11}	σ_{22}	σ_{33}		oriented	(z)
V	/1	+256	+315	+29	7 + 15	6	+ 162	
(G 2	+270	+338	+30	9 + 16	_	+247	
	13	+255	+320	+29	4 + 15		+ 162	
	.4	+262	+327	+29	6 + 16		+215	
	15	+256	+322	+29	3 + 15	3	+ 162	
	76	+261	+323	+29	,		+215	
<u>-</u>	7	+260	+ 323	+ 30	0 + 15	7	+ 164	
Cyclosporin A				in C	DCl_3	in C	C_6D_6	(A)
MeBmt ¹ —Abu ² —				A7	+252.7	A7	+252.1	•
MeLeu ¹⁰ —MeLeu ⁹	_ _{D-}	Ala ⁸ —Ala ⁷ -	−MeLeu ⁶	Abu	+259.5	Abu	+259.1	
					+260.9		+260.7	
				A 8	+261.3	A 8	+260.9	
				375	+262.0		+262.3	
				V5	+262.6	376	+263.2	
						V5	+ 264.4	
					+264.1		+265.8	
					+268.2 +269.2		+267.9	
					+ 209.2		+269.1	
Ala in DMSO				Ala	+264.2			(B)
fly Île				Ile	+272.0			` /
l Phe Val				Val	+267.7			
The Van				Ser	+258.7			
ro—Ser(Bzl)				Pro	?			
				Phe	+264.2			
Ala : DMGO				Gly	+279.0			
Ala in DMSO				Ala	+267.1			(B)
ily Ile I				Ile	+272.1			
he Val				Val	+271.7			
ib—Ser(Bzl)				Ser	+266.7			
ib—Ser(Bzl)				Aib	+254.1			
				Phe Gly	+275.0 +277.6			
Ala in DMSO				Ala	+267.4			(B)
eu Lys(Z)				Lys	+260.0			(-)
ne Tyr (Bzł)				Tyr	+275.8			
ic tyr (BZ!)				Gly	+279.3			
ly — Gly				Gly	+265.1			
				Phe	+269.3			
				Leu	+270.0			

Table 13. -cont.

Substance and its state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Antamanide from mushroom Aman 0.07 M in CDCl ₃ Val ¹ —Pro ² —Pro ³ —Ala ⁴ —Phe ⁵ Phe ¹⁰ —Phe ⁹ —Pro ⁸ —Pro ⁷ —Phe ⁶	Val +266.4 Pro +243.3 Pro +252.3 Ala +252.6 Phe +266.6 Phe +263.9 Pro +243.8 Phe +260.2 Phe +271.2	(C)
Toxins from Amanita phalloides Various solutions		(D)
$X^{1} - Hyp^{2} - X^{3}$ $\downarrow \qquad \qquad \downarrow $		

	α-amanitin	β -amanitin	γ-amanitin	amaninamide
$X^{1} = X^{2} = X^{4} = X^{4}$	Asn γ, δ -(OH) ₂ -Ile 6-OH-Trp	Asp γ , δ -(OH) ₂ -Ile 6-OH-Trp	Asn γ-OH-Ile 6-OH-Trp	Asn γ, δ -(OH) ₂ -Ile Trp
NH (X-1)	+268.9	+266.3	+270.0	+269.8
$NH_2(X-1)$	+262.1	_	+260.9	+262.3
NH (X-3)	+273.2	+275.5	+273.2	+273.2
NH (X-4)	+263.7	+263.2	+263.7	+263.6
Indole (X-4)	+257.7	+257.1	+257.6	+255.7
NH (Gly-5)	+283.8	+282.1	+284.5	+283.3
NH (Ile-6)	+260.5	+259.4	+260.6	+260.6
NH (Gly-7)	+270.2	+269.4	+270.3	+270.2
NH (Cys-8)	+268.2	+267.2	+268.1	+268.0

(F)

Table 13. —cont.

Substanc	e and ii	ts state		Nitrogen (ppm) refe nitrometh	Notes		
Val	(a)	+ 259.1	+ 258.3	+ 256.2	+ 254.9	+ 255.4	
	(β)	+260.0	+259.2	+257.4	+255.7	+256.0	
Thr	(α)	+266.7	+265.9	+262.1	+261.2	+260.9	
	(β)	+267.2	+267.0	+262.6	+262.8	+262.9	
MeVal	(a)	+271.2	+272.3	+265.9	+265.7	+266.3	
	(β)	+271.3	?	?	?	?	
Sar	(a)	+278.9	+280.7	+272.1	+274.0	+275.0	
	(B)	+279.0	?	?	?	+275.1	
N-10		+95.2	+98.6	+91.3	+88.2	+90.3	
2-NH ₂		+298.4	+297.6	+293.8	+294.8	+ 292.9	
-		+299.0			·	+293.5	

Oxytocin 0.002 M in H₂O

Free			Bound to bovine neurophysin					
pН	6	2.3-6	2	6	2.3-6	2		
		+ 264.1 + 256.7						

8-Arginine-vasopressin 0.002 M in H₂O

Free						
pН	6	2.3-6	2	6	2.3-6	2
Tyr-2	?	+257.1	?	+ 255.5	•	?
		+ 259.4 + 260.5			+ 256.8	+ 257.2

Bleomycin A₂ (G) 0.07 m in
$$H_2O/D_2O$$
, $pH = 3.9$, $+20^{\circ}C$
 S
 CH_2CH_2NHCO — $+262.5$ (NH) ("BIT" unit)

 Me_2S^+ — CH_2CH_2NHCO — $+264.0$
 Val $+248.1$
 $His (pH1.24, +30^{\circ}C)$ $+261.9$ (NH)

Table 13. —cont.

Substance and its state		Nitrogen shi (ppm) referr nitromethan	ed to neat		Note
Angiotensin in H_2O , $pH = 4.5$	<u>,,,</u>		0.3 м	0.02 м	(H)
		Arg-2	+ 307.7	+ 304.4	
		Val-3	+ 258.2	+ 257.9	
		Tyr-4	+ 255.7	+ 254.8	
		Val-5	+258.2	+ 256.2	
		Phe-8	+ 258.2	+ 256.2	
Leu-enkephalin, Tyr ¹ —Gly ² -	–Glv³—Phe	2 ⁴ —Leu ⁵			(I)
0.04 m in DMSO	Ciy Tin	Leu	+30°C	+ 60°C	(1)
		Gly-2	?	?	
		Gly-3	+271.3	+ 271.3	
		Phe-4	+ 259.5	+260.1	
		Leu-5	+257.0	?	
$0.01 \mathrm{m} \; in \; H_2O, \; pH = 5.2$					(J)
5,0 % at 400 11/20, p21 5.12		Tyr	+ 343.0	(NH_3^+)	(3)
Vancomycin 0.14 m in DMSO, +65°C		Free	Complex with Ac—D-Ala-		(K)
	1-NH ₂ Me	+ 346.2	+ 339.9		
	2-NH	+ 268.7	+ 262.0		
	3-NH	+ 261.6	+ 260.6		
	4-NH	+ 261.2	+ 262.9		
	5-NH	+ 252.0	+ 252.7		
	6-NH	+ 272.7	+273.0		
	7-NH	+ 255.3	+ 254.1		
	8-CONH		+ 271.4		
	9-NH ₃ ⁺	+ 322.8	+ 323.0		
Ac—D-Ala—D-Ala					(K)
in DMSO		Free	Complex w vancomycin		
	AcAla Ala	+ 254.7 + 260.9	+ 252.3 + 259.0		
Ala*Ala solid state	4	+ 259.9 (*Ala + 314.2 (σ_{11}) + 301.4 (σ_{22}) + 164.0 (σ_{33})	, isotropic)		(L)

Table 13. —cont.

Substance and its state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Gly—*Gly · HCl · H₂O solid state	+ 264.5 (*Gly, isotropic) + 319.9 (σ_{11}) + 309.3 (σ_{22}) + 164.3 (σ_{33})	(M)
Gly-Tyr solid state	+ 338 (Gly, NH ₂) + 258 (Tyr, NH)	(N) (N)
Asp—Phe—OMe in H_2O , $pH = 6.0$	+ 240.0 (Phe, free peptide) + 239.6 (Phe, complex with β-cyclodextrin)	(O)
Boc—L-Ala—L-Pro—OCH ₂ Ph (Boc = PhCH ₂ OCO) solid state	+ 251 (Pro, isotropic) + 351 (σ_{11}) + 250 (σ_{22}) + 154 (σ_{33})	(P)
Ac—Gly—Ala—NH ₂ solid state	+ 256.7 (NH, isotropic) + 334.9 (σ_{11}) + 294.4 (σ_{22}) + 150.1 (σ_{33})	(Q)
in D_2O	+ 255.5 (NH)	(Q)
Ac—Gly—Tyr—NH ₂ solid state in D ₂ O	+ 262.2 (NH, isotropic) + 327.4 (σ_{11}) + 302.4 (σ_{22}) + 170.2 (σ_{33}) + 259.8 (NH)	(Q) (Q)
Ac—Gly—Gly · HCl solid state	+ 268.0 (NH, isotropic) + 322.2 (σ_{11}) + 320.6 (σ_{22}) + 169.5 (σ_{33})	(Q) (Q)
in D_2O	+270.7 (NH)	(Q)
Ac—Gly—Gly—NH ₂ solid state	+ 270.1 (NH, isotropic) + 338.8 (σ_{11}) + 315.3 (σ_{22}) + 168.9 (σ_{33})	(Q)
in D_2O	+ 270.8 (NH)	(Q)
Ac—Gly—Phe—NH ₂ solid state in D ₂ O	+ 256.2, + 258.1 (NH, isotropic) + 259.2 (NH)	(Q) (Q)
Alanine polymers and copolymers	[Ala*, Ala, X],	. •
solid state	L '' 7 ' ' ''' 201	(R)

Table 13. —cont.

Nitrogen shielding (ppm) referred to neat Substance and its state nitromethane								Notes	
					Ala*-NH	nitrogen	atoms		
x	% Ala*	% Ala	% X	Confor- mation	Isotropic	σ_{11}	σ_{22}	σ_{33}	
None	20	80	0	α-helix	+ 260.8 + 257.4	+ 155.6 + 158.6	+ 305.6	+ 321.6	
D-Ala	5 20	0	95 80	β-sheet a _ι -helix α _ι -helix	+ 262.9 + 263.1	+ 162.6 + 161.6	+ 297.9 + 302.5 + 304.5	+ 315.6 + 323.6 + 323.6	
Gly	20 20	60 0	20 80	α-helix β-sheet	+ 261.0 + 260.8	+ 157.6 + 159.6	+ 302.2 + 300.0	+ 323.6 + 322.6	
Leu	5 20 5 5	0 0 75	95 80 20 50	α-helix α-helix α-helix	+ 261.0 + 261.0 + 261.5	+154.9 +155.6 +156.6	+ 303.6 + 302.7 + 302.5	+ 324.6 + 324.6 + 325.6	
Val	5 20 5	45 0 0 25	95 80 70	α-helix β-sheet β-sheet α-helix	+ 261.3 + 252.6 + 259.9 + 261.0	+ 152.6 + 149.6 + 157.6 + 158.6	+ 305.4 + 296.6 + 297.2 + 306.5	+ 325.6 + 312.6 + 324.6 + 317.6	
Ile Asp(OBz)	20 5 10 20	0 0 0 0	80 95 90 80	β-sheet α-helix α-helix α-helix	+ 258.6 + 258.3 + 258.5 + 258.1	+ 159.6 + 149.6 + 149.6 + 151.6	+ 296.6 + 304.9 + 303.6 + 300.9	+ 319.6 + 320.6 + 322.6 + 321.6	
Glu(OBz) Glu(OMe) Sar	20 20 20 20	0 0 0	80 80 80	α-helix α-helix ?	+ 259.2 + 259.7 + 260.6	+ 153.6 + 154.6 + 161.6	+ 302.9 + 301.5 + 297.4	+ 321.6 + 320.6 + 322.6 + 322.6	
Boc—(L-Al					+ 257.8 (isotropic)	1		(S)
Poly(L-Leu solid stat		elix			+ 262.6 (isotropic)	ı		(S)
Boc—(L-Le	, .				+ 252.6 (isotropic)	l		(S)
Poly(β-ben solid state		lix	ate)			isotropic) isotropic)			(S) (S)
Poly(β-ben solid state			ate)		+ 262.0 (isotropic)	į.		(S)
o-NO ₂ —Cl			-[L-(Glu(OMe)] ₆ —NHBu + 260.1 ((isotropic)	1		(S)
Poly(γ-Me- solid state			te)		+ 262.0 ((isotropic)	1		(S)
o-NO ₂ —C ₆ solid stat			Gl	u(OBz)]4		(isotropic))		(S)

Table 13. —cont.

Substance and its state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Poly(L-Val) solid state, β-sheet	+ 253.7 (isotropic)	(S)
Poly(L-Ile) solid state, β-sheet	+ 253.5 (isotropic)	(S)
Ala residues in elastin solid state	+ 244 (β-sheet) + 259 (α-helix)	(T) (T)
Ala, Gly, Val-copolypeptides in CF ₃ COOH Ala-Gly Gly-Gly Val-Gly Ala-Val Gly-Val Ala-Ala Gly-Ala Val-Val	+ 270.7 + 269.8 + 266.9 + 258.3 + 257.5 + 254.4 + 254.1 + 252.8	(U)
MeCH(NH ₂)PO ₃ H ₂ ("Ala-P") lyophilized solid, pH 7.5 pH 13.5	+ 339.2 + 345.7	(V)
O ₃ P-CH ₂ -NH ₂ ⁺ -CH ₂ -CC (glyphosphate, N-phosphonometh in H ₂ O pH - 1 pH 4.5 to 7.0 pH 13		(W)

- (a) Data from ref. 1087, ¹⁵N-labelled algae, by feeding with K¹⁵NO₃, 30.416 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally, via a calibrated sample of 90% formamide, to 1 M HNO₃, +4.4 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (b) Data from refs. 390, 1088 and 1089, ¹⁵N-labelled histidine moiety (at imidazole ring), 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M HNO₃, +4.4 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (c) Data from refs. 392 and 1090, details same as in footnote (b).
 - (d) Data from ref. 392, 32 MHz ¹⁵N CPMAS spectra, other details as in footnote (b).
- (e) Data from refs 389 and 390, 20.27 MHz ¹⁵N CPMAS spectra, other details as in footnote (b).
- (f) Data from ref. 918, ¹⁵N-labelled substances, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃ in aqueous ammonium nitrate, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); ¹⁵N-¹⁹⁵Pt coupling observed.
- (g) Data from ref. 1091, ¹⁵N-labelled sample, 60.8 MHz¹⁵N spectra, referenced originally to *internal* NH₄, probably ca. 358 ppm from neat nitromethane.
- (h) Data from ref. 1092, 50.7 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported originally vs liquid ammonia taken at +381.9 ppm from neat nitromethane. The reference quoted contains corrections and additions to an earlier paper, ref. 197.

Table 13. —cont.

- (i) Data from ref. 197, with additions and corrections in ref. 1092, details as in footnote (h), but 'H{15N} multiple-quantum (HMQC) COSY spectra.
- (j) Data from ref. 215, ¹⁵N-labelled enzyme, 500/50.7 MHz and 600/60.8 MHz 2-D ¹H{¹⁵N} spectra, HMQC (heteronuclear multiple-quantum shift correlation), HMBC (heteronuclear multiple-bond correlation), and PS-COSY (pseudo-single-quantum COSY), field parallel to sample tube, referenced originally to liquid NH₂, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1). See also ref. 630, where ¹³C/¹⁵N-labelled Phe (F) units were examined, using 500/50.7 MHz ¹H{¹⁵N} 2-D forbidden echo spectra, referenced indirectly to liquid NH₃; the relative shieldings for F4, F67, F104, F114, and F153 were essentially the same as those quoted in the present table, but they showed a systematic shift of about +3.8 ppm from the latter, probably due to some errors in the calibration technique. See also ref. 388, where only valine (V) units were examined, for Nase TDP-Ca²⁺ complex both in the solid state (25 MHz ¹⁵N CPMAS spectra) and in an aqueous solution (pH = 7.7, 500/50.7 MHz ¹H/¹⁵N HMQC spectra); the relevant nitrogen shieldings were essentially the same, for both states, as those shown in the present table, within 0.2 ppm, with the only exception for valine in *N*-terminal extension, + 262.2 in the solid and + 250.9 in solution.
- (k) Data from ref. 1093, ¹⁵N-labelled cytochrome, details as in footnote (j), but 2-D HMQC-TOCSY and 2-D HMQC-NOESY spectra.
- (l) Data from ref. 245, 15 N/ 13 C-labelled sample, 500/125/50.7 MHz 3-D 1 H/ 13 C/ 15 N spectra, field parallel to sample tube, referenced originally as in footnote (j). See also references 496, 518, 519, and 628, where 50.7 MHz 15 N spectra were employed in observations of nitrogen shieldings of cytochrome c_2 at various pH values; the latter were referenced to 1 M HNO₃ (+4.4 ppm from neat nitromethane), but only some approximate values were reported, +120 to +210 ppm (after recalculation) for His and haeme units, +230 to +270 ppm for peptide nitrogen atoms and those in sidechains of TRP (T), Gln (E), and Asn (N), +330 to +350 ppm for *N*-terminus and Lys (L) sidechain nitrogen atoms.
- (m) Data from ref. 199, details as in footnote (j), uniformly and selectively ¹⁵N-labelled lysozyme, HMQC, ¹⁵N-edited COSY and NOESY spectra; unlabelled lysozyme, double-quantum-filtered (DQF) COSY and TOCSY spectra.
- (n) Data from refs 201, 202, and 1008, ¹⁵N-labelled protein, experimental details as in footnote (m); the numbers with asterisks (*) represent resonance signals which showed appreciable broadening, owing to paramagnetic interactions, but could be discerned from the background.
- (o) Data from ref. 231, ¹³C and ¹⁵N randomly labelled samples, 500/50.7 MHz ¹H{¹⁵N} COSY spectra, calibration as in footnote (v).
- (p) Data from ref. 204, ¹⁵N-labelled amino acid residues, 500/50.7 MHz ¹H{¹⁵N} COSY spectra, field parallel to sample tube, referenced originally to aqueous NH₄Cl, + 352.5 ppm from neat nitromethane (Table 2), conversion scheme IIb, (Table 1); the sequence of nitrogen shieldings in each of the groups follows the increasing shielding for the corresponding proton resonances.
- (q) Data from ref. 98, natural-abundance $30.4\,\text{MHz}^{15}\text{N}$ INEPT spectra and $300/30.4\,\text{MHz}^{14}\text{H}^{15}\text{N}$ 2-D HMPQ spectra, field parallel to sample tube, referenced originally, via a transmitter frequency, to liquid NH₃, $+381.9\,\text{ppm}$ from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (r) Data from ref. 160, ¹⁵N-labelled amino acid residues, 40.5/400 MHz and 50.7/500 MHz ¹H{¹⁵N} COSY spectra, field parallel to sample tube, referenced originally to a fictitious standard taken + 90.4 ppm from a sample of *N*-acetylglycine, probably NH₄⁺ in aqueous ammonium nitrate, + 359.6 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (s) Data from ref. 1094, ¹⁵N-labelled lysine residues, 40.508 MHz¹⁵N DEPT spectra and 40.508/400 MHz¹H{¹⁵N} COSY spectra, other details as in footnote (r); the sequence of nitrogen shieldings follows that of the decreasing shielding of the corresponding protons.

- (t) Data from ref. 210, ¹⁵N-labelled protein, 500/50.7 MHz ¹H{¹⁵N} 2-D HMQC spectra, calibration as in footnote (j).
- (u) Data from ref. 1095, ¹⁵N-labelled amino acid residues, 50.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄ in 4 m NH₄ NO₃ in 2 m HNO₃, + 359.1 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (v) Data from ref. 873, ¹³CO/¹⁵N-labelled protein at methionine residues, 100.6/40.5 MHz ¹³C{¹⁵N} COSY spectra, field parallel to sample tube, referenced indirectly, via aqueous ammonium sulphate, to liquid NH₃, + 381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (w) Data from refs 35, 110, and 477, labelled samples, by feeding with [15 N] glycine, 9.08 MHz INEPT spectra, field perpendicular to sample tube, referenced originally to NH₄⁺ in aqueous NH₄NO₃, +359.6 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (x) Data from ref. 218, ¹⁵N-labelled aglycon, 500/50.7 MHz zero- and double-quantum ¹H{¹⁵N} COSY spectra, field parallel to sample tube, referenced originally to neat nitromethane, corrected for bulk susceptibility effects.
- (y) Data from refs 170 and 171, natural-abundance 40.5/400 MHz ¹⁵N{¹H} COSY spectra, field parallel to sample tube, referenced originally to NH₄⁺ in 5 M NH₄NO₃ in 2 M HNO₃, + 359.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (z) Data from refs 343 and 344, ¹⁵N specifically labelled gramicidin, 20.3 MHz powder and CPMAS ¹⁵N spectra of dispersed and oriented solid samples, referenced originally to NH₄⁺ in aqueous NH₄NO₃, +359.6 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1). Essentially the same values for Val⁷-unit were obtained in ref. 189, from 20.3 MHz ¹⁵N powder spectra of ¹⁵N selectively labelled sample, referenced originally to NH₄⁺ in solid ammonium nitrate, +358.4 ppm from neat nitromethane (Table 2).
- (A) Data from ref. 174, 30.4 MHz ¹⁵N INEPT and 30.4/300 MHz ¹⁵N{¹H} COSY spectra, field parallel to sample tube, referenced originally to NO₃ in aqueous NH₄NO₃, + 4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (B) Data from ref. 175, 30.4/300 MHz ¹⁵N{¹H} COSY spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (C) Data from ref. 172, 50.7 MHz¹⁵N INEPT spectra and 500/50.7 MHz¹H{¹⁵N} COLOC-COSY spectra, field perpendicular to sample tube, referenced originally to formamide, + 268.6 ppm from neat nitromethane (Table 2), conversion scheme IVb (Table 1); reported originally vs. fictitious ammonia standard taken at + 112.4 ppm from the reference employed; we retrieved the original data, and carried out recalculation as indicated above.
 - (D) Data from ref. 220, details as in footnote (C).
- (E) Data from ref, 181, $ca.~0.02\,\text{M}$ solutions, ¹⁵N-labelled actinomycin, 50.1/500 MHz and 30.4/300 MHz ¹⁵N{¹H} COSY spectra, field parallel to sample tube, referenced originally to 4 M NH₄Cl in 2 M HCl, + 352.5 ppm from neat nitromethane (Table 2) conversion scheme IIb (Table 1).
- (F) Data from ref. 97, ¹⁵N-labelled amino acid residues, details as in footnote (A), referenced originally, indirectly, to fictitious ammonia standard taken at +380.2 ppm from neat nitromethane, conversion scheme IVb (Table 1); for formulae and more data, see ref. 5, p. 404.
- (G) Data from ref. 192, natural-abundance 50.7/500 MHz ¹⁵N{¹H} 2-D HMQC spectra, calibration as in footnote (j).
- (H) Data from ref. 794, ¹⁵N selectively labelled angiotensins, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (I) Data from ref. 190, 400/40.4 MHz ¹H{¹⁵N} 2-D HMQC spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.

Table 13. —cont.

- (J) Data from ref. 1096, 28.9 MHz¹⁴N spectrum, other details as in footnote (I).
- (K) Data from ref. 109, details as in footnote (y).
- (L) Data from ref. 346, ¹³CO/¹⁵N-labelled peptide bond, 20.27 MHz ¹⁵N CP-MRCV-8 solidstate measurements, referenced originally to solid NH₄Cl, + 341.0 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects; originally reported vs fictitious ammonia standard taken at +38.5 ppm from the reference employed; we retrieved the original data, and recalculated them as indicated above.
- (M) Data from ref. 320, ¹⁵N selectively labelled sample, 29.8 MHz ¹⁵N CPMAS spectra, referenced originally to aqueous NH₄Cl, +352.9 ppm from neat nitromethane (Table 2).
- (N) Data from ref. 387, 29.8 MHz¹⁵N CPMAS spectra, referenced originally to a fictitious ammonia standard taken at +380.2 ppm from neat nitromethane.
- (O) Data from ref. 763, ¹⁵N-labelled Phe moiety, 40.4 MHz ¹⁵N spectrum, calibration as in footnote (z).
- (P) Data from ref. 325, ¹⁵N-labelled Pro moiety, 15 MHz ¹⁵N CPMAS and powder spectra, referenced originally to solid ammonium sulphate, + 355.7 ppm from neat nitromethane (Table 2, conversion scheme II (Table 1).
- (Q) Data from ref. 324, ¹³C/¹⁵N-labelled peptide bonds, 20.3 MHz ¹⁵N CPMAS and powder spectra, referenced originally to solid NH₄Cl, + 341.0 ppm from neat nitromethane (Table 2); also 36.5 MHz ¹⁵N solution spectra, field parallel to sample tube, referenced originally to *internal* NH₄Cl, *ca.* + 252.9 ppm from neat nitromethane (Table 2); originally reported vs fictitious ammonia standard taken at +21 ppm from the references used; we retrieved the original data and carried out recalculation as indicated above.
- (R) Data from refs 71 and 1097, ¹⁵N-labelled alanine residues (Ala*), 27.4 MHz ¹⁵N CPMAS spectra, referenced originally to solid glycine, + 348.0 ppm from neat nitromethane (Table 2), but originally reported vs NH₄ standard taken at +11.6 ppm from the actual reference employed; this corresponds to aqueous NH₄NO₃, see Table 2.
 - (S) Data from ref. 74, details as in footnote (R), but natural-abundance spectra.
- (T) Data from ref. 364, 30.4 MHz ¹⁵N CPMAS spectra, referenced originally to NO₃⁻ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2).
- (U) Data from ref. 111, 40.5 MHz¹⁵N spectra, field parallel to sample tube, referenced originally as in footnote (T), conversion scheme IIb (Table 1).
- (V) Data from ref. 1074, ¹⁵N-labelled sample, 32.2 MHz ¹⁵N CPMAS spectra, referenced originally to solid NH₄Cl, +341.0 ppm from neat nitromethane.
- (W) Data from ref. 517, ¹⁵N-labelled sample, 30.4 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄⁺ in aqueous ammonium nitrate, +359.6 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

Table 14. Nitrogen shieldings in some azides

Compound	Solution or s	tate	Nitrogen shielding (ppm) referred to neat nitromethane				
Azide ion Na ⁺ [-N=N ⁺ =N ⁻]	0.3 M in H ₂ O	+ 280.6 (==1 + 131.5 (==1	(a) (a)				
	0.1 M phosph buffer as above,			+ 256(?) (=N ⁻)			
	complex with chloroperoxic		+ 264(?) (=	(b)			
Covalent azides R N=N+=N-		RN	=N+=	=N-			
various	various	+ 243 to + 325	+ 124 to + 149	+ 114 to + 159	(a)		
Ph—NNN	in CDCl ₃	+ 292.7	+ 134.4	+ 147.0	(c)		
HN-N N=N NNN	in DMSO	-	+ 145.7	+ 146.5	(d)		
NNN—NNN	in DMSO	-	+ 140.7	+ 151.2	(d)		
(Bu ^t O) ₃ Si—NNN	in CDCl ₃	+316	+ 145.4	+ 205.8	(e)		
Me Me Ge(N(SiMe ₃) ₂ NNN						
	in CDCl ₃	+ 204	+ 143	+ 204	(e)		
(3) R	0.4 м in acetone				(f)		
O N (1)	"AZU", $R = H$		+308.4 +13 +232.9 (N-1	り			
HOH ₂ C O	"AZT", R = Me	+ 30°C	+237.8 (N-1)	4.6 + 167.0 !)			
N ₃		−10°C	+ 227.7 (N-3 + 303.5 + 13 + 238.0 (N-3 + 228.1 (N-3	5.5 + 164.0 ')			

Table 14. -cont.

Compound	Solution or s	tate	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
O R	0.4 м in acetone			(f)
O N (1)	"AZU", $R = H$	+35°C	+305.7 +135.9 +168 +231.9 (N-1)	.4
HOH ₂ C N ₃	"AZT", $R = Me$	+ 30°C	+244.0 (<i>N</i> -3) +305.9 +135.2 +169 +237.1 (<i>N</i> -1)	.3
		− 10°C	+ 227.7 (N-3) + 306.6 + 135.2 + 170 + 237.1 (N-1)	.4
			+228.1 (N-3) +306.7 +136.2 +170 +237.1 (N-1) +228.2 (N-3)	.6
$(CF_3S)_2N-B < NNN \\ NNN$	neat + 10% C ₄ D ₄		+298.8 + 150.6 + 173 +335.2 (N-B)	.8 (g)
$[(CF_3S)_2N]_2B-NNN$			+294.8 +151.6 +168 +340.0 (N-B)	.6 (g)
N_3^- as ligand to Co^{3+}		in H ₂ O	+ 239 (N-1) + 333 (N-2) + 334 (N-3)	(h) (h) (h)

- (a) See ref. 5, p. 430, and references therein.
- (b) Data from ref. 1017, ¹⁵N-labelled terminal atom in the azide ion, 36.5 MHz ¹⁵N spectra, referenced to NO₃⁻ in aqueous ammonium nitrate, +4.0 ppm from neat nitromethane (Table 2); however, the values depart significantly from the data quoted in footnote (a), and probably there was some error in the referencing technique employed.
- (c) Data from ref. 648, 40.56 MHz¹⁵N spectrum, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
- (d) Data from ref. 668, selectively ¹⁵N-labelled azido group, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 10 m HNO₃, + 18.2 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
- (e) Data from ref. 795, 25.5 MHz¹⁵N spectra and 18.1 MHz¹⁴N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (f) Data from ref. 703, 27.4 MHz ¹⁵N spectra, calibration as in footnote (e); the substances are potential inhibitors of replication of human immunodeficiency virus (HIV) and Moloney murine leukaemia virus (MuLV).
- (g) Data from ref. 788, 40.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced to NO₃ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (h) Data from ref. 732, 18.059 MHz¹⁴N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.

Table 15. Nitrogen shieldings in cyanates, isocyanates, thiocyanates, isothiocyanates and related structures

Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Covalent is	othiocyanates, R-	-N=C=S	,	
Me—NCS	otniocyanates, R-	O.3 M in DMSO neat liquid 0.3 M in acetone 0.3 M in dioxane 0.3 M in CHCl ₃ 0.3 M in CH ₂ Cl ₂ 0.3 M in MeOH 0.3 M in benzene 0.3 M in CCl ₄ 0.3 M in Et ₂ O 0.3 M in n-hexane	+ 287.02 + 289.90 + 290.91 + 290.93 + 291.61 + 291.66 + 292.08 + 292.58 + 293.68 + 294.42 + 296.90	(a)
Bu—NCS		0.2 m in DMSO 0.2 m in THF 0.2 m in MeNO ₂ 0.2 m in MeCN 0.2 m in (Me ₂ N) ₃ PO 0.2 m in dioxane neat liquid 0.2 m in CH ₂ Cl ₂ 0.2 m in MeOH 0.2 m in CHCl ₃ 0.2 m in Et ₂ O	+ 276.8 + 276.8 + 276.9 + 278.4 + 278.5 + 278.8 + 279.0 + 279.0 + 279.4 + 280.0 + 281.1	(b) (b) (b) (b) (b) (b) (b) (b) (b)
Ph—NCS	MDI) NGG	in CDCl ₃	+ 271.3	(c)
K-CH=CF	I(R ¹)—NCS	neat liquids or in CHCl ₃		(b)
R¹	\mathbb{R}^2			
Pr t-Bu n-hexyl H Et SMe	H H H Ph Et	(stereoisomers)	+ 268.4 + 271.5 + 268.4 + 275.6 + 264.3 {+ 271.5 + 268.1	
Me ₃ Si—NC Si(NCS) ₄ Covalent thi		in CDCl ₃ in pyridine-d ₅	+ 265.3 + 237.2	(d) (d)
R—S—C≡ Me—SCN Bu—SCN		neat liquid 0.2м in Et ₂ O	+ 105 + 101.8	(b) (b)

Table 15. —cont.

Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
		neat liquid	+ 102.5	(b)
		0.2 м in dioxane	+ 103.7	(b)
		0.2 м in (Me ₂ N) ₃ PO	+ 104.2	(b)
		0.2 м in CH ₂ Cl ₂	+ 104.9	(b)
		0.2 m in MeCN	+ 105.4	(b)
		0.2 м in DMSO 0.2 м in THF	+ 105.6	(b)
		0.2 м in MeNO ₂	+ 105.6 + 106.5	(b)
		0.2 м in MeOH	+ 100.3	(b) (b)
Ph—SCN		neat liquid	+97.0	(b)
	I(R ¹)—SCN	neat liquids or in CHCl ₃		(b)
R ¹	R ²	j		
Н	Н	_	+ 95.6	
Pr	Н		+ 93.9	
t-Bu	H		+93.6	
n-hexyl	H		+ 93.1	
Н	Ph		+ 97.2	
SMe	Et	(stereoisomers)	\ \ +97.0 \ \ +100.2	
(Iso)thiocya	nate ions and ligand	ls		
K ⁺ [NCS] ⁻		0.3 м in H ₂ O	+ 174.1	(e)
		sat. in H ₂ O	+170.0	(e)
NH ₄ [NCS]	_	solid state	+170.9 (NCS)	(f)
			$+345.8 \text{ (NH}_4)$	(f)
Li ⁺ [NCS]		in H ₂ O	+ 160.1	(g)
Bu ₄ N ⁺ [NC		in H ₂ O	+167.0 (NCS)	(g)
(cyclohexyl)		0.15 м in toluene	+ 264.2	(h)
[Ge(NCS) ₆]		in acetone	+ 225.0	(i)
[Ge(NCS) ₅ C		in acetone	+ 222.0	(i)
[Ge(NCS) ₄ C		in acetone	+ 219.0	(i)
Ge(NCS) ₄		in acetone	+ 237.2	(i)
Ge(NCS) ₃ C		in acetone	+ 231.5	(i)
Ge(NCS) ₂ C		in acetone	+ 229.9	(i)
Ge(NCS), C		in acetone	+269 to +275	(i)
$K_4[Nb_2(S_2)]$ $Cs_4[Nb_2(S_2)]$		in acetone in MeCOOH	+ 217 + 209	(j)
	$_{2}(NCS)_{8}$ $_{2}(SSe)_{2}(NCS)_{8}$	in acetone	+ 209	(j) (j)
[Hg(SCN) ₄]		in H ₂ O	ca. + 139	(k)
[Cd(SCN) ₄]		in H ₂ O	ca. + 139 ca. + 171	(k)
$[Zn(NCS)_4]$	2-	in H ₂ O	ca. + 200	(k)
[(-100/4]			Ca. 200	(~)

Table 15. -cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Covalent isocyanates			
R-N=C=O	various	+338 to +365	(l)
SF ₅ —NCO	neat liquid	$+275.8 (^{14}N)$	(m)
TeF,—NCO	neat liquid	+307.9 (14N)	(m)
OCN — CH_2 — NCO	solid	$+305.9 (^{15}N)$ +336	(m) (n)
Covalent cyanates			
R—O—C≡N	various	+190 to +222	(1)
SeF ₅ —OCN	neat liquid	+ 193.2	(m)
(Iso)cyanate ion			
K+[NCO]	0.3 м in H ₂ O	+ 302.6	(1)
	sat. in H ₂ O	+ 302.9	<u>(l)</u>

- (a) Data from ref. 32, high-precision 4.33 MHz 14 N spectra in CW mode, differential saturation technique combined with lineshape fitting, $+35 \pm 0.2^{\circ}$ C, referenced to neat nitromethane in concentric spherical sample and reference containers in order to eliminate bulk susceptibility effects
- (b) Data from ref. 1098, 25.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (c) Data from ref. 730, 9.12 MHz ¹⁵N spectrum, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (d) Data from ref. 154, 36.5 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to 0.1 m nitromethane in CDCl₃, +3.8 ppm from neat nitromethane (Table 26), conversion scheme IIb (Table 1).
 - (e) See ref. 5, pp. 433-436, and references therein.
- (f) Data from ref. 351, 20.3 MHz ¹⁵N CPMAS and static powder spectra, rotation rate 1.63 kHz, referenced originally to liquid NH₃, + 381.99 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
 - (g) See footnote (b).
- (h) Data from ref. 939, 4.33 MHz ¹⁴N spectrum, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (i) Data from refs. 654 and 1099, 26.0 MHz ¹⁴N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; dipy = 2,2'-dipirydyl.
- (j) Data from ref. 1100, 21.68 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to NO₃⁻, probably in aqueous NaNO₃, +3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (k) Data from ref. 1101, 7.14 MHz ¹⁴N spectra, referenced to *internal* NH₄⁺ in NH₄NCS which was present in the solutions, probably about +355 ppm from neat nitromethane if one assumes that the NCS resonance observed appears at +170 ppm from nitromethane, as shown in this table.
 - (l) See footnote (e).
- (m) Data from ref. 938, 6.43 MHz ¹⁴N spectra and 9.03 MHz ¹⁵N spectrum, field perpendicular to sample tube, referenced originally to NO₃⁻ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (n) Data from ref. 1057, 20.3 MHz¹⁵N CPMAS spectrum, referenced originally (uncorrected) to liquid NH₃, +381.9 ppm from neat nitromethane (Table 2).

Table 16. Nitrogen shieldings in cyanides, isocyanides, fulminates and related structures

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
	Bolation of state	miomenane	
Covalent cyanides (nitriles)	0.05	. 136.01	(a)
Me—C≡N (acetonitrile)	0.05 m in cyclohexane	+ 125.81	(a)
	0.25 M in CCl ₄	+ 127.22	(a)
	0.25 M in benzene	+ 129.66	(a)
	0.25 м in Et ₂ O	+ 129.75	(a)
	0.25 M in dioxane	+ 132.21	(a)
	0.25 M in acetone	+ 133.52	(a)
	0.25 m in DMSO	+ 133.99	(a)
	0.25 M in CHCl ₃	+ 134.53	(a)
	0.25 m in CH ₂ Cl ₂	+ 134.58 + 135.29	(a)
	neat liquid	+ 133.29 + 138.34	(a)
	0.25 m in EtOH	• -	(a)
	0.25 M in MeOH	+ 139.62	(a)
	0.25 M in H ₂ O	+ 145.47	(a)
	0.25 м in CF ₃ CH ₂ OH	+ 148.82	(a)
Et—C≡N	0.25 м in cyclohexane	+ 128.22	(a)
	0.25 M in ČCl₄	+ 129.25	(a)
	0.25 м in Et ₂ O	+ 131.03	(a)
	0.25 м in benzene	+ 131.28	(a)
	0.25 м in dioxane	+ 133.66	(a)
	0.25 m in acetone	+ 134.54	(a)
	0.25 м in DMSO	+ 134.89	(a)
	0.25 м in CH ₂ Cl ₂	+ 136.46	(a)
	0.25 м in CHCl ₃	+ 136.58	(a)
	0.25 м in EtOH	+ 138.59	(a)
	0.25 м in MeOH	+ 140.63	(a)
	$0.25\mathrm{M}$ in $\mathrm{H}_2\mathrm{O}$	+ 146.96	(a)
	0.25 м in CF ₃ CH ₂ OH	+ 151.40	(a)

Pr ⁱ —C≡N	0.25 M in cyclohexane 0.25 M in CCl ₄ 0.25 M in Et ₂ O 0.25 M in benzene 0.25 M in dioxane	+ 129.80 + 131.03 + 132.23 + 132.78 + 134.76	(a) (a) (a) (a) (a)	
	0.25 M in acetone	+ 135.81	(a)	
	0.25 m in DMSO	+ 136.05	(a)	
	0.25 M in CH ₂ Cl ₂	+ 137.78	(a)	
	0.25 m in CHCl ₃	+ 138.39	(a)	
	0.25 м in EtOH	+ 139.58	(a)	7
	0.25 м in MeOH	+ 141.74	(a)	Ħ
	$0.25\mathrm{M}$ in $\mathrm{H}_2\mathrm{O}$	+ 148.36	(a)	RC
	0.25 m in CF ₃ CH ₂ OH	+ 151.83	(a)	NITROGEN NMR SPECTROSCOPY
Bu'—C≡N	0.25 м in cyclohexane	+131.51	(a)	Z
	0.25 м in CCl ₄	+ 132.70	(a)	ź
	0.25 м in Et ₂ O	+ 134.02	(a)	×
	0.25 м in benzene	+ 134.46	(a)	SPI
	0.25 м in dioxane	+ 136.30	(a)	EC.
	0.25 м in acetone	+ 137.33	(a)	뒱
	0.25 м in DMSO	+ 137.51	(a)	Q
	$0.25 \mathrm{M}$ in $\mathrm{CH_2Cl_2}$	+ 139.78	(a)	ğ
	0.25 м in CHCl ₃	+ 140.56	(a)	₽ _j
	0.25 м in EtOH	+ 140.84	(a)	~
	0.25 м in MeOH	+ 143.07	(a)	
	0.25 м in H ₂ O	+ 149.89	(a)	
	0.25 м in CF ₃ CH ₂ OH	+ 153.87	(a)	
Me—CN	neat + 10% benzene-d ₆	+ 136.0	(b)	
	in $CH_2Cl_2 + Ph_3Si^+ClO_4^-$	+ 134.5	(c)	
	absorbed on decationated zeolite NaY activated at			
	300 K and 400 K	+ 155	(d)	213
	as above, after heating	+150	(d)	ω

Table 16—cont.

Compound	Solution or state	Nitrogen si (ppm) refer nitrometha	rred to neat	Notes
Pr ⁱ —CN	neat + 10% benzene-d ₆	+137.0		(b)
Bu ^t —CN	neat + 10% benzene-d ₆	+ 139.0		(b)
Me ₃ Si—CN	neat + 10% benzene-d ₆	+77.7		(b)
Ph—CN	in CDCl ₃	+ 123.8 + 123.5		(e) (f)
substituted Ph—CN	in CDCl ₃	(12010		(-)
2,4,6-Me ₃		+ 123.5		(f)
2,4,6-Et ₃		+115.2		(\mathbf{f})
2,4,6-i-Pr ₃		+114.8		(\mathbf{f})
2,4,6-t-Bu ₃		+100.3		(f)
3-CF ₃		+117.8		(e)
R - C = N	solid state			(g)
<u>R</u>		static	MASS	
NMe ₂				
	(isotropic)	+ 129.4	+ 129	
	(σ_{11})	- 14.7 + 26.2	- 23 - 24	
OMe	(σ_{22})	+ 26.2 + 376.6	+ 34	
OME	(σ_{33}) (isotropic)	+ 376.6 + 128.9	+ 375 + 129	
	(σ_{11})	+ 128.9 - 11.1	+ 129 - 9	
	(σ_{11}) (σ_{22})	+ 22.8	+23	
	(σ_{22}) (σ_{33})	+ 374.9	+ 379	

		. 107.0	. 127
Me	(isotropic)	+ 127.2	+ 127
	(σ_{11})	+ 14.2	-3
	(σ_{22})	+ 14.6	+11
	(σ_{33})	+ 381.1	+ 373
F	(isotropic)	+ 126.4	+ 125
	(σ_{11})	-12.0	-3
	(σ_{22})	+11.4	+ 5
	(σ_{33})	+379.8	+ 376
Cl	(isotropic)	+124.5	+ 124
	(σ_{11})	-13.6	-6
	(σ_{22})	+10.5	0
	(σ_{33})	+376.5	+380
Br	(isotropic)	+123.7	+123
	(σ_{11})	-16.3	-9
	(σ_{22})	+ 7.7	+4
	(σ_{33})	+377.4	+378
Bu ^t	(isotropic)	+123.5	+ 124
24	(σ_{11})	-16.4	– 11
	(σ_{11})	+ 7.2	0
	(σ_{22}) (σ_{33})	+379.6	+382
CN	(isotropic)	+122.1	+120
CIT	(σ_{11})	-11.7	-11
		+1.7	-2
	(σ_{22})	+376.2	+373
NMe ₃ ⁺ I ⁻	(σ_{33}) (isotropic)	+ 115.9	+117
TAINIC3 I		-21.5	-21
	(σ_{11})	-0.8	-4
	(σ_{22})	+ 369.8	+ 373
NO	(σ_{33})	+118.9	+117
NO ₂	(isotropic)	-16.0	-8
	(σ_{11})	-4.9	-6
	(σ_{22})	+ 377.6	+ 371
	(σ_{33})	, 577.0	,

Table 16—cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
H−C≡N	acidic aqueous	+ 145 (NCN)	(h)
	•	+116 (CN ion)	(h)
HOOC—CH ₂ —CN	in CDCl ₃	+ 137.1	(i)
	in $CDCl_3 + HBA$	+ 139.6	(i)
$(^{-}OOC-CH_2-CN)_2Mg^{2+}$	in CDCl ₃	+ 143.5	(i)
C = C $COOMe$	in DMSO	+ 121.8 (CN)	(j)
Cyano group			
in cyanamides, R ₂ N—CN		see Table 11	
in cyanates, R—O—CN		see Table 15	
in cyanohydrazones, RC(CN)=NNHR		see Table 9	
in cyano-azo cpds., R—N—N—CN		see Table 28	
in $[N(CN)_2]^-$ ion		see Table 11	
in [R—C(NO)CN] ⁻ ions		see Table 29	
$R = \left(\begin{array}{c} CN \\ N - \overline{C} \\ CN \end{array} \right)$	in DMSO + Cr(acac) ₃	+88.3 to +89.1	(k)
(R = CN, COOMe, COMe, COPh, H, CH2Ph, But, Pr, Pri, Et, Me, NO2)			
Nitrilium ions			
$R-C\equiv N^+-R$	various	+215 to +252	(1)
$H-C\equiv N^+-KrF$	in BrF_5 , $-57^{\circ}C$	+ 200.8	(m)

H—C≡N+—XeF	in anhydrous HF, -10°C	+ 235.4	(n)
Me—C≡N ⁺ —XeF	in anhydrous HF, -10°C	+ 251.1	(n)
Et-C\subseteq N^+-XeF	in anhydrous HF, -10°C	+ 251.9	(n)
$FCH_1-C\equiv N^+-XeF$	in anhydrous HF, -10°C	+ 229.2	(n)
[HCN—Ag—NCH]+SbF ₆	in liquid SO ₂	+ 157.8	(0)
Fulminates and nitrile N-oxides			
$R-C\equiv N\to O$	various	+160 to +189	(p)
$Na^+(CNO)^-$	in H ₂ O	+ 180	(p)
MeHg—CNO	1 м in DMSO	+ 161.4	(q) ~
2	0.87 м in THF	+ 161.1	(q)
PhHg—CNO	1.3 m in DMSO	+ 159.3	(q) 🛱
6	0.35 m in THF	+ 168.6	(q) မှ
Hg(CNO) ₂	0.8 м in DMSO	+ 163.3	(q) 写
	0.03 м in THF	+ 161.8	(q) Z
Covalent isocyanides (isonitriles)			AR S
$R-N^+\equiv C^-$	neat liquids	+185 to +220	(r) 💆
Pr ⁱ —NC	0.1 м in CH ₂ Cl ₂	+ 194	(s) \ddot{G}
Bu—NC	0.1 м in CH ₂ Cl ₂	+210	(s)
Bu'—NC	$0.1 \mathrm{M}$ in $\mathrm{CH_2Cl_2}$	+ 186	(s) S
NC NC	0.1 m in CH ₂ Cl ₂	+ 197	NITROGEN NMR SPECTROSCOPY (q q) q q q (r) s) s) s) (s)
PhCH ₂ —NC	0.1 m in CH ₂ Cl ₂	+212	(s)
O N $-CH_2$ -NC	0.1 m in CH ₂ Cl ₂	+ 206	(s)
Me NC	0.1 м in CH ₂ Cl ₂	+211	(s) <u>2</u>

Table 16—cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
CF ₃ —NC (R—NC)Mo(CO) ₅	neat liquid, -102°C in CH ₂ Cl ₂	+ 207.6	(t) (s)
R			
Bu' Pr' cyclohexyl 2,4-Me ₂ -phenyl		+ 180 + 188 + 191 + 200	
cis-(R—NC) ₂ Mo(CO) ₄ R	in CH ₂ Cl ₂		(s)
Bu ^t Pr ⁱ cyclohexyl 2,4-Me ₂ -phenyl		+ 182 + 190 + 193 + 202	
fac-(R-NC) ₃ Mo(CO) ₃	in CH ₂ Cl ₂		(s)
Bu ^t Pr ⁱ cyclohexyl 2,4-Me ₂ -phenyl		+ 184 + 190 + 196 + 202	

cis-(R—NC) ₄ Mo(CO) ₂ R	in CH ₂ Cl ₂		(s)
Bu' Pr ⁱ cyclohexyl 2,4-Me ₂ -phenyl		+ 187, + 183 + 194, + 193 + 198, + 196 + 196	
$R = 2,6-Me_2-phenyl$	in CH ₂ Cl ₂		(s) <u>z</u>
Mo(CO)(R—NC) ₅ Mo(R—NC) ₆ (R—NC)W(CO) ₅ cis-(R—NC) ₂ W(CO) ₄ fac-(R—NC) ₃ MW(CO) ₃ cis-(R—NC) ₄ W(CO) ₂ W(CO)(R—NC) ₅		+ 203 + 197 + 202 + 203 + 203 + 206 + 197 + 197	NI ROGEN NM & SPECI ROSCOPY (u)
Cyanide ion and cyano complexes K^+CN^-	0.3 м in H ₂ O 8.5 м in H ₂ O	+ 106.1 + 102.5	(u) (u)
[Mn2H(CN)(CO)5(dppm)2][Mn2H(CNH)(CO)5(dppm)2]+	in CD_2Cl_2 , $+22^{\circ}C$ in $CD_2Cl_2 + HBF_4 \cdot Et_2O$	+ 57.6	(v)
$[Mn_2H\{\mu-\eta^2-CN\}(CO)_4(dppm)_2]$ $[Mn_2H\{\mu-\eta^2-CNH\}(CO)_4(dppm)_2]^+$	$+22^{\circ}$ C -80° C in CD ₂ Cl ₂ , $+22^{\circ}$ C in CD ₂ Cl ₂ + HBF · Et ₂ O	+ 183.4 + 172.4 (doublet) + 139.7	(v) (v) (v)
· · · · · · · · · · · · · · · · · · ·	−80°C	+ 235.6	(v)

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
CI , L L-M-C≡N L' CI	in CH_2Cl_2 (L = PMe_2Ph)		(w)
M = Ir $M = Rh$		+95.9 +85.3	
$ \begin{array}{c c} CI & L & CI \\ L - M' - C \equiv N - M^2 - L \\ CI & CI & L \end{array} $	in CH_2Cl (L = PMe_2Ph)		(w)
M¹ M² Ir Ir Ir Rh Rh Ir Rh Rh		+ 204.6 + 178.1 + 196.1 + 169.9	
$K_4[Re(CN)_7] \cdot 2 H_2O$ $K_4[Re(CN)_6] \cdot 3 H_2O$ $K_4[Co(CN)_6]$	in D ₂ O in D ₂ O in D ₂ O	+ 99 + 98 + 98	(x) (x) (x)

		coordinate	
cyano	o-hae	moprotein	units

cyano-naemoprotein units			
Horseradish peroxidase	in H_2O , $pH = 7.0$	- 572	(y)
	in D_2O , $pD = 7.3$	<i>-</i> 574	(y)
Lactoperoxidase	in H_2O , pH = 7.3	-419	(y)
Chloroperoxidase	in H_2O , pH = 6.1	-408	(y)
Coprinus cinereus peroxidase	in H ₂ O	- 574	(z)
Cytochrome c	in D_2O_1 , pH = 7.8	-843	(y)
Cytochrome c haemopeptide-11	in D_2O , $pD = 7.4$	– 745	(y)
Myoglobin	in D_2O , $pD = 8.0$	-932	(y)
Haemoglobin	in D_2O , $pD = 7.7$	$-981 (\alpha)$	(y)
	= 20, F=	$-1051 (\beta)$	(y)
Cyano Fe(III) porphyrin complexes (Prot = protohemin) (Prot DME = its dimethyl ester)			(y)
(CN) ₂ Fe Prot ³⁻	in H_2O , pH = 9.2	– 444	
(CN) ₂ Fe Prot DME	in DMSO	– 770	
(Civ)21 Ci i ot Divie	in benzene	-765	
	in benzene + N-Me-imidazole	- 683	
(N-Me-imidazole)(CN)Prot DME	in DMSO	- 933 - 922	
(imidazole) (CN)Prot DME	in DMSO	- 1011	
(imidazole)(CN) Prot DME	in DMSO	734	
Cyano ligands in ferricytochrome c derivatives	in D ₂ O		(A)
	•		` '
Bovine	(pD = 6.4)	-855	
Chicken	· /	-858	

Table 16—cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Dog		-857	
Horse	(pD = 6.07)	-852	
Pigeon	4	-861	
Porcine		-857	
Rabbit		-851	
Sheep		-856	
Tuna	(pD = 6.3)	-854	
C. brusei	(1- 0.0)	-880	
S. cerevisiae		-882	
without d-camphor with d-camphor without d-camphor, upon addition of the latter without d-camphor, in the presence of the latter and putidaredoxase		-437 (*) -504 -517 -481 (*)	
Cyano ligands low-spin Fe(III) porphyrins			(C)
[FeL(CN) ₂]	aqueous detergent micelles, pH = 9.6	-580 to -450	

Free CN⁻ in the systems

detergent micelles in aqueous pyridine

+118

- (a) Data from ref. 33, high-precision 14 N measurements at 36.141524 MHz, $+35.0 \pm 0.2^{\circ}$ C, field parallel to sample tube, referred to neat nitromethane via 0.3 M nitromethane in deuterioacetone, +0.77 ppm from neat nitromethane; Lorentzian lineshape fitting was employed, and the standard deviations of the shieldings estimated were smaller than 0.1 ppm; the results are corrected for bulk susceptibility effects.
- (b) Data from ref. 877, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (c) Data from ref. 1102, ¹⁵N spectra, spectrometer not specified, referenced originally to liquid ammonia taken at +380.2 ppm from neat nitromethane, uncorrected for bulk susceptibility effects.
- (d) Data from ref. 1103, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane via a calibrated sample of neat acetonitrile, uncorrected for bulk susceptibility effects.
- (e) Data from ref. 879, 30.45 MHz 15 N spectra, field parallel to sample tube, referenced originally to aqueous NH₄Cl, +352.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); the results were originally reported vs fictitious ammonia standard taken at +25.0 ppm from the actual reference employed, and we retrieved the original data and recalculated them as indicated above.
- (f) Data from ref. 1104, 36.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄⁺ in aqueous ammonium nitrate, +359.6 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); originally reported vs fictitious ammonia standard taken at +20.7 ppm from the reference employed, neglecting the fact that the latter value refers to a field which is perpendicular to sample tube; we retrieved the original data and recalculated them as indicated above; Cr(acac)₃ was employed as a relaxation reagent for the samples.
- (g) Data from ref. 331, 15 N-labelled CN group, 20.3 MHz 15 N static-powder and MASS spectra, referenced originally to liquid NH₃, + 381.9 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects; the data from static powder spectra are accurate, on the average, within \pm 0.5 ppm; those obtained from the spinning sidebands (SSB) in the MASS spectra (rotation rate 1.0–2.5 kHz) are less precise, from \pm 1 ppm to + 6 ppm.
- (h) Data from ref. 1105, 28.9 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to 0.1 m nitromethane in CDCl₂ + 3.8 ppm from neat nitromethane (Table 26), conversion scheme IIb (Table 1).
- (i) Data from ref. 108, 40.0 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat formamide, +268.6 ppm from neat nitromethane (Table 2), conversion scheme IVb (Table 1); see Table 24 for HBA structure.
 - (j) Data from ref. 193; see Table 4, footnote (d) therein.
- (k) Data from refs. 1106 and 1107, 9.1 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.

NITROGEN NMR SPECTROSCOPY

- (1) See ref. 5, p. 439, and references therein.
- (m) Data from ref. 824, 50.7 MHz ¹⁵N spectrum, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Kr-N spin-spin coupling was observed in the ion.
 - (n) Data from ref. 868, 18.075 MHz ¹⁴N spectra, other details as in footnote (m); Xe-N spin-spin coupling was observed in the ions.
 - (o) Data from ref. 826, spectrometer not reported, ¹⁵N spectra, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (p) See ref. 5, p. 440, and references therein.
- (q) Data from ref. 951, 5.72 MHz ¹⁴N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; ¹⁴N-¹⁹⁹Hg spin-spin coupling was observed in the fulminates concerned.
 - (r) See ref. 5, p. 439, and references therein.
- (s) Data from ref. 1108, 21.7 MHz ¹⁴N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (t) Data from ref. 829, 6.47 MHz ¹⁴N spectrum, field perpendicular to sample tube, referenced originally to NO₃ in aqueous ammonium nitrate, + 4.0 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (u) See ref. 5, p. 438, and references therein.
- (v) Data from ref. 758, ¹⁵N-labelled cyanide, 40.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄ in aqueous ammonium nitrate, +359.6 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); dppm = Ph₂CH₂PPh₂.
- (w) Data from ref. 597, ¹⁵N-labelled cyanide, 20.3 MHz and 40.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (x) Data from ref. 1109, 28.88 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to aqueous NaNO₃, +3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (y) Data from ref. 1110, ¹⁵N-labelled cyanide, 36.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃⁻ in aqueous ammonium nitrate, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); 1.0 μm to 3.0 μm solutions containing 10 μm phosphate buffer or 5 μm acetate buffer in the case of chloroperoxidase.
 - (z) Data from ref. 1111, details as in footnote (y).
 - (A) Data from ref. 1112, details as in footnote (y).
- (B) Data from ref. 1113, *Pseudomonas putida* cytochrome, pH = 7.4, 2μ M solutions, 0.1 M phosphate buffer at +22°C for data marked with an asterisk (*), 0.05 M Tris-HCl buffer with 5% glycerol at +13°C for other samples; other details as in footnote (y).
- (C) Data from ref. 659, 50.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; 0.0012 M solutions, three detergents were used ctab, sds, and TX-100 (Merck and Sigma); L = protoporphyrin IX (3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-dipropionic acid).

Table 17. Nitrogen shieldings in azole ring systems and related structures

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Pyrrole ring systems			
NH (pyrrole)	various in DMSO	+ 224 to + 233 + 255.1	(a) (b)
$\langle\!$	various	+230 to +232	(a)
$Me \longrightarrow NR Me$	in DMSO $R = CH_2CMe_3$ $R = CH_2CHMe_2$	+ 223.1 + 223.9	(c)
(indole)	in DMSO in CDCl ₃ in CDCl ₃ /pyridine	+ 245.5 + 259.1 + 253.6	(b) (d) (d)
products of its protonation with CF ₃ COOH	in CDCl ₃ + CF ₃ COOH		(e)
NH NH		+ 256.0 (indole NH) + 306.1 (amino NH)	

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
NH ₂ NH CH		+ 261.1 (indole NH) + 338.2 (NH ₂)	
NH Me	in CDCl ₃	+ 253.1	(d)
products of protonation of methylindole with CF ₃ COOH	in CDCl ₃ + CF ₃ COOH		(e)
Me NH+ CF ₃ COO-		+ 168.3	
Me N HOOCF ₃		+74.6	
O ₂ N Me	in DMSO	+ 238.7 (NH)	(b)

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me Me	in DMSO R = H (dominant tautomer)	+ 245.3	(i)
NR O	R = Me	+ 252.0	
Me H	in DMSO $R = H$ (dominant	+ 242.1	(j)
NR O	$\begin{array}{rcl} & \text{tautomer}) \\ R &= Me \end{array}$	+ 248.5	
	in CDCl ₃ R = H (dominant tautomer)	+ 242.1	(j)
	R = Me	+ 248.6	
NMc OEt	in DMSO in CDCl ₃	+ 267.3 + 266.3	(i) (j)
Me Me OEt	in DMSO	+ 140.6	(i)
OEt NH			
OEt	in DMSO in CDCl ₃	+ 257.8 (averaged) + 264.6 (NH) + 133.9 (=N)	(j) (j) (j)

229

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me Et Me R NH NH (21) (22)	R Me Me Et N NH O (23) (24)		
(biliverdin IX-a)	$R = CH_2CH_2COOH$ in DMSO	+ 246.2 (N-21) + 245.4 (N-22)	(m) (m)
R ¹ R ² R ¹ R ² O NH NH (21) (22)	R ¹ R ² R ¹ R ² NH O (23) (24)	+ 249.0 (N-24)	(m)
Coprobiliverdin III tetral (including isomers obtain permutations of R ¹ and I	ned by		
	in H_2O $R^1 = CH_2COOMe$ $R^2 = CH_2CH_2COOMe$	+ 244.2 (N-21) + 255.2 (N-24) + 178.5 (averaged N-22, 23)	(n)
O NH NH (21) (22)	Et Me Et Me NH O (23) (24)	+ 249.9 (N-21, 24) + 172.4 (averaged N-22, 23)	(o) (o)

in CDCl₃

(o)

(o)

(o)

(o) (p) (p) (p)

(q)

(o)

(o)

(o)

Me Et Me Me Me
$$CH_2$$
 Me CH_2 Me

+221.1 (NH-CO) + 245.9 (central NH)

+252.7 (N-21)

+ 226.7 (N-22)

+131.4 (N-23)

+229.5 (N-24)

in CDCl₃

+315.6

231

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me Me Me Me Me	in CDCl ₃ protonated in CDCl ₃	+ 165.5 (averaged) + 212.7	(o) (o)
OHC NH Et Me	in CDCl ₃	+ 233.5 (NH) + 256.6 (NMe)	(o) (o)
OHC NH Et Me OHC NH O	in CDCl ₃	+ 237.9 (pyrrole NH) + 256.6 (lactam NH)	(o) (o)
Me Mc CH ₂ Me Me Me NH O	in CDCl ₃	+ 235.1 (pyrrole NH) + 240.2 (lactam NH)	(o) (o)
Me Me CH ₂ Me Bu ¹ OOC NH OMe	in CDCl ₃	+ 232.2 (pyrrole NH) + 140.2 (=N)	(o) (o)

233

(s)

in C₆D₆

BR 2

Table 17. —cont.

X = lone pair + 219.3 S + 212.6 S + 216.9	Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$R = Bu^t$	+ 201	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+ 196	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$R_{2} = -SCH_{2}CH_{2}S - (in CDCl_{3}) + 187$ $R_{2} = -SCH_{2}CH_{2}S - (in CDCl_{3}) + 201$ (t) $N = \begin{bmatrix} N \end{bmatrix}_{2}BEI \qquad in CDCl_{3} + 195$ (t) $N = \begin{bmatrix} N \end{bmatrix}_{3}B \qquad in CDCl_{3} + 207$ (t) $N = \begin{bmatrix} N \end{bmatrix}_{3}B \qquad in CDCl_{3} + 207$ (t) $N = \begin{bmatrix} N \end{bmatrix}_{3}B \qquad in C_{6}D_{6} + 206.7$ $M_{6}Sn \qquad in CDCl_{3} + 216.2$ $M_{6}Sn \qquad in CDCl_{3} + 216.2$ $M_{6}Sn \qquad in CDCl_{3} + 206.7$ $M_{6}P \qquad in C_{6}D_{6} + 219.3$ $M_{6}P \qquad in C_{6}D_{6} + 219.3$ $M_{6}P(S) \qquad in C_{6}D_{6} + 212.6$ $N = \begin{bmatrix} N \end{bmatrix}_{3}C_{6}D_{6} + 212.6$ $N = \begin{bmatrix} N \end{bmatrix}_{3}C_{$				(t)
$R_{2} = -SCH_{2}CH_{2}S - (in CDCl_{3}) + 201 $ (t) $N = \int_{2}^{2} BEt $ in CDCl ₃ + 195 (t) $N = \int_{3}^{8} B $ in CDCl ₃ + 207 (t) $N = \int_{3}^{8} B $ in CDCl ₃ + 216.0 $Me_{3}Si $ in CDCl ₃ + 216.2 $Me_{3}Pb $ in CbCl ₃ + 216.2 $Me_{3}Pb $ in CbCl ₃ + 216.2 $Me_{3}P $ in CbCl ₃ + 216.2 $Me_{3}P $ in CbCl ₃ + 219.3 $Me_{2}P(S) $ in CbCl ₃ + 219.3 $Me_{2}P(S) $ in CbCl ₃ + 2112.6 $Me_{3}P $ in CbCl ₃ + 2112.6 $N = \frac{1}{2}P $ See + 2112.6				
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & \\ \hline & N & & & & & & & & \\ \hline & N & & & & & & & \\ \hline & & & & & & & \\ \hline & N & & & & & \\ \hline & & & & & & \\ \hline & & & & &$				(t)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R_2 = -SCH_2CH_2S - (in \ CDCl_3)$	+ 201	(t)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BEt	in CDCl ₃	+ 195	(t)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left[\begin{array}{c} \\ \end{array}\right]_{3}^{B}$	in CDCl ₃	+ 207	(t)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(t)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Me, Si	in C D	± 216 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		in CDCL		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \frac{\text{Me}_{2}P(S)}{\text{in } C_{6}D_{6}} + 212.6 $ $ \text{in } C_{6}D_{6} $ $ X = \text{lone pair} + 219.3 $ $ S + 212.6 $ $ Y = 10.9 $ $ X = 10.9 $ $ Y = 10$		$\int_{0}^{\infty} C_{\ell} D_{\ell}$		
X = lone pair + 219.3 S + 212.6 S + 216.9				
$\frac{1}{100}$ Se $+216.9$		X = lone pair		(u)
$^{\text{Me}_2\text{YA}}$ BH, +213.0) NA DV			
211,	Megra	\mathbf{BH}_3	+ 213.0	

//\\	in C_6D_6	N—P	NMe_2	(u)
(Me ₂ N)PX	X = lone pair S Se	+ 203.3 + 207.6 + 207.6	+ 345.9 + 346.5 + 345.4	
	in C ₆ D ₆	N—P	NEt ₂	(u)
`N' (Et ₂ N) ₂ PX	X = lone pair Se	+ 204.2 + 203.9	+317.5 +321.3	
(N)	in C ₆ D ₆	NP	NMe ₂	(u)
Me ₂ NPX	X = lone pair Se	+ 207.6 + 210.8	+ 348.7 + 345.4	
	in C_6D_6	N—P	NMe	(u)
N PX MeN NMe	X = lone pair S Se	+ 187.0 + 199.6 ?	+ 338.9 + 337.5 + 336.1	
Pyrazole (1,2-diazole)		?	+ 338.3	
NH (2)	0.5 м in CDCl ₃ 0.01 м in phosphate buffer	+ 132.2 (averag + 138.2 (averag		(v) (w)

5м in MeCN

0.0011 M in phosphate buffer

(1)

LADH—NAD+—pyrazole

+ 131.7 (averaged) + 148.2 (N-1) + 124.0 (N-2)

(w)

(w) (w)

Table 17. —cont.

Compound	Solution or state	Nitrogen shi nitromethan	ielding (ppm) referred to no	eat Notes
ZnCl ₂ —pyrazole (1:2) ZnCl ₂ —pyrazole (1:1)	3 м in MeCN 1 м in DMSO	+ 154.4 (ave + 144.3 (ave		(w) (w)
Et N NH	0.01 m in phosphate buffer	+ 139.8 (ave	eraged)	(w)
LADH—NAD+—4-Et-pyrazole	0.001 м in phosphate buffer	+ 152.2 (N- + 125.2 (N-		(w) (w)
(1) NMe (1)	in CDCl ₃	+ 180.8 (N- + 76.5 (N-		(a) (a)
N-Me-pyrazole— $ZnCl_2$ (2:1) in $\bigvee_{\substack{N \ (1) \ 1}}$	CHCl ₃	+ 182.1 (N- + 127.3 (N-		(w) (w)
R R		N-1	N-2	
CH ₂ Ph Me ₂ C(OH)— CH ₂ COOEt	2 m in MeCN 0.1 m in acetone, -50°C 2 m in MeCN 2 m in MeCN + ZnCl ₂ 3 m in DMSO	+ 167.7 + 140.3 + 179.5 + 181.1 + 158.8	+ 73.5 + 80.6 + 72.6 + 127.5 + 87.4	(w) (v) (w) (w) (w)
NO ₂ NH ₂ CONH ₂	0.5 м in acetone in DMSO	+ 107.8 + 162.1 (+ 295.	+ 82.9 + 72.4 .1, NH ₂)	(v) (k) (k)
$ N$ $ CH_2Ph$	2м in CHCl ₃	+ 142.5	+82.9	(w)

Table 17. —*cont*.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R = H	I in DMSO	+ 195 (NH)	(a)
[] ``N		+65 (=N)	(a)
N = N	1e in DMSO	+ 203 (NMe)	(a)
R R		+ 57 (=N)	(a)
R = N	VH ₂ in DMSO	+ 184.6 (NR)	(k)
		+56.3 (=N)	(k)
		+305.9 (NH2)	(k)
R = M	le in DMSO	+162 (NMe)	(a)
N—R		+92 (=N)	(a)
R = N	IH ₂ in DMSO	+ 145.5 (NMe)	(k)
	_	+94.8 (=N)	(k)
		+289.1 (NH2)	(k)
Me		N—O N	(y)
~ 1	in DMSO	+115.4 +115.8	
N—OMe	in MeOH	+117.8 + 124.9	
N'	in CF ₃ COOH	+120.0 + 133.7	
Me		N—O N	(y)
/	in DMSO	+121.0 + 123.3	
	in MeOH	+118.5 +164.5	
N—OH	in CF ₃ COOH	+117.9 + 214.1	
Me		N—O N	(y)
	in DMSO	+96.1 +208.5	
$N \rightarrow 0$	in MeOH	+105.0 +211.8	
N Me	in CF ₃ COOH	+113.3 +214.1	

(z)

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R CH ₂ R R NH (2)	tautomers		(A)
$(R = NHCOC_{17}H_{35})$	in CDCl ₃	N—Ph N-2	
m.p. 110°C, after of	dissolving	{ +222.3 +257.0 (NH) +221.3 +255.0 (NH) +199.0 +138.0 (=N)	
m.p. 61°C, after di	issolving	$^{2}+212.0$	
both cases, upon s	standing	\begin{cases} +221.8 & +257.8 (NH) \\ +221.4 & +255.2 (NH) \\ +199.4 & +137.7 (=N)	
Imidazole (1,3-diazole) ring	g systems	•	
(3)	in DMSO	+ 168 (averaged)	(a)
[N	in D ₂ O	+ 177.2 (averaged)	(B)
NH	protonated in D ₂ O	+ 208.2 (averaged)	(B)
(1)	in DMSO	+219 (N-1)	(a)
(3) —N		+ 118 (N-2)	(a)
<i>[i]</i>	in D ₂ O	+217.7 (N-1)	(B)
NMe	•	+ 134.7 (N-2)	(B)
(1)	protonated in D ₂ O	+210.3 (N-1)	(B)
(3) — N	-	+ 209.8 (N-2)	(B)
	in DMSO	+ 198.7 (N-1)	(k)
NNH ₂		+ 72.4 (N-2)	(k)
		$+311.4 (NH_2)$	(\mathbf{k})

241

α-lytic protease		
/_ '\	(τ)	
R NH	(π)	
↓↑		
/_NH	(t)	
$R \cap N$	(π)	

Imidazole moieties in His-57 in

lyophilized powder	
prepared from solutions at	
various pH	

$$N(\tau)$$
, pH = 4.9
pH = 8.1 + 202
+ 213

$$N(\pi)$$
, pH = 5.0 + 215
pH = 9.6 + 148

(C)

in
$$DMSO$$

$$+220.4$$

$$+121.9 (=N)$$

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
ON_NHPO3- NMe (phosphocreatinine)	in H_2O , pH = 9.0	+ 175.0 (=N) + 274.8 (NHP)	(G) (G)
0,	in H ₂ O,	=N NH ₂	(G)
NMe (creatinine)	pH = 11.0 pH = 2.0	+ 179.3 + 306.0 + 236.7 + 303.7	
R = Me	in DMSO	+ 236.4 (NMe)	(a)
$R = NH_2$	in DMSO	+ 136.3 (=N) + 215.8 (NNH ₂) + 143.6 (=N) + 317.8 (NH ₂)	(a) (k) (k) (k)
		NMe = N	(H)
N NMe	in DMSO in MeOH in CF ₃ CH ₂ OH	+ 264.5 + 186.8 + 261.8 + 195.5 + 263.2 + 200.8	
		NMe NH	(H)
NH O	in DMSO in MeOH in CF ₃ CH ₂ OH in CF ₃ CH ₂ OH/DMSO	+ 268.5 + 262.7 + 265.4 + 261.0 + 266.2 + 263.0 + 268.8 + 263.1	

in DMSO	+ 269.7	(H)
in MeOH		(H)
		(H)
32	,	(- /
in DMSO	+ 259.9	(H)
in MeOH	+ 259.5	(H)
in CF ₃ CH ₂ OH	+ 266.9	(H)
0.5 w in DMSO	± 243 Q (NIMe)	(I)
0.5 M III DIVISO		(1) (1)
i. DMCO		(I) (I) (F) (F)
in DMSO		(F)
	+ 143.0 (=N)	(F)
0.5 m in DMSO	+ 186 4 (averaged)	(I)
o.s m m b.vibo	(Too. ((avoragoa)	(*)
in DMSO	+ 233.0 (NMe)	(F)
		(F)
	1 == //3 (1/12-)	(-)
in DMSO	+ 235.5	(F)
0.5 M in DMSO	+ 227 4	(II)
		(I) (F)
III DINIGO	1 223.0	(1)
	NOMe =N	(J)
		` '
in DMSO	+174.0 + 145.0	
in acetone	+174.3 +145.6	
01 30112011	, 20,10	
	in MeOH in CF ₃ CH ₂ OH in DMSO in MeOH in CF ₃ CH ₂ OH 0.5 M in DMSO	in MeOH in CF ₃ CH ₂ OH in DMSO in MeOH in MeOH in MeOH in CF ₃ CH ₂ OH 0.5 M in DMSO in DMSO in DMSO in DMSO

NO	NMe	
+140.5	+ 261.8	
+155.9	+255.1	
+ 156.0	+254.0	
NO/NOH	=N/NH	
+153.4	+ 190.8	
+167.8	+198.0	
+ 159.5	+237.0	
NOMe	=N	
+ 179.4	+ 149.8	
+ 179.4	+147.6	
+179.4	+ 161.3	
+ 176.6	+ 163.0	
NO	NMe	
+ 149.2	+ 260.0	
+ 160.5	+ 255.1	
+160.3	+ 254.1	
NO/NOH	=N/NH	
+ 184.5	+ 192.8	
+ 186.6	+191.2	
+ 182.0		
+170.0	? ?	

1,2,3-Triazole and 1,2,5-triazole ring systems

		central N	flanking N	
$ \begin{bmatrix} $	neat liquid in DMSO in acetone in CDCl ₃ in MeOH in H ₂ O	+ 85.5 + 77.8 + 80.9 + 79.0 + 89.7 + 86.0 + 85.5	+ 57.2 + 68.8 + 64.8 + 61.9 + 70.5 + 56.6 + 53.0	(M) (M) (M) (M) (M) (M)
(N=N	in CF ₃ CH ₂ OH	+ 63.3	+ 33.0	(M)

Table 17. —cont.

Compound	Solution or state	Nitrogen nitromet		opm) referred to neat	Notes
\sqrt{N} (3)		N-1	N-2	N-3	(M)
N (2) NMe (1)	neat liquid	+ 144.0	+ 12.0	+ 30.0	
TVIVEC (1)	in DMSO	+ 143.3	+16.2	+28.4	
	in acetone	+ 144.9	+14.1	+ 27.1	
	in CDCl ₃	+ 145.0	+16.3	+ 30.7	
	in MeOH	+ 144.3	+ 19.1	+41.7	
(5) N N (2)		N-1	N-2,5		(M)
NMe (1)	neat liquid	+132.0	+ 53.0		
	in DMSO	+135.0	+54.0		
	in acetone	+135.0	+54.0		
	in CDCl ₃	+132.8	+51.1		
	in MeOH	+132.8	+ 51.1		
N (2)	R = H, solvent?	+ 103.8 (1	N-1, 3)		(N)
N (1)		+12.0 (1	N-2)		(N)
Ř	R = Me, solvent?	+ 162.0	N-1)		(N)
		+4.2	N-2)		(N)
		+40.0 (1	N-3)		(N)
	R = OH, solvent?	+ 125.4 (1	N-1)		(N)
		+ 18.5 (1			(N)
		+69.6 (1	N-3)		(N)
	$R = NH_2$, in DMSO	+ 148.2 (1	N-1)		(k)
		+2.3(1	N-2)		(k)
		+50.8(1	N-3)		(k)
		+307.7 (1	NH_2)		(k)
	R = 5'-phosphoribosyl, in DMSO	+ 145.0 (1			(O)
		+2.9(1			(O)
		+ 37.2 (1			(O)

$$\begin{array}{c} R = Me, \text{ in} \\ N = R = NH_2, \text{ in DMSO} \\ R = -CH(Me)CH_2COOMe \\ R = -CH(Me)CH_2COOMe \\ R = -COCH = CHCH = CHMe \\ R = -COCH = CHMEO \\ R = -COCH = -COCH \\ R = -COCH = CHMEO \\ R = -COCH = -COCH \\ R =$$

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
1,2,4-Triazole and 1,3,4-triaz	zole ring systems		
N HN N	in DMSO	+ 135.7 (N) + 123.3 (NN)	(M) (M)
↑ ↓	0.5 m in DMSO	+ 136.5 (N)	(Q)
N = NH			
R = Me	in DMSO	+ 171.3 (N-1)	(M)
NR (1)		+ 81.9 (N-2)	(M)
NR (1)		+ 127.4 (N-4) + 155.7 (N-1)	(M) (k)
$R = NH_2,$	in DMSO	+ 79.8 (N-2)	(k)
	220	+ 131.6 (N-4)	(k)
		+303.0 (NH2)	(k)
$N-N$ $R = Me$, $R = NH_2$	in DMSO	+217.8 (N-1)	(M)
()		+ 59.8 (N-3,4)	(M)
$NR R = NH_2,$	in DMSO	+ 198.2 (N-1)	(k)
ν-,		+ 66.1 (N-3,4)	(k)
		+ 315.5 (NH ₂)	(k)
NH ₂		N-1 N-2 N-4 NH ₂	(R)
4) N—(1112	in DMSO	+187.4 + 130.4 + 156.6 + 334.1	
~ L N (2)	in H ₂ O	+186.1 + 137.7 + 166.1 + 337.0	
NMe (1)	hydrochloride in H ₂ O	+178.5 + 139.7 + 228.2 + 332.8	

(T)

(R)

(T)

(T)

$$R \xrightarrow{(4)} N \xrightarrow{N} N^{(2)} N^{(2)}$$

$$R \xrightarrow{N CH_2Ph} N^{(1)}$$

$$R = MeS$$

$$R = O$$
 $N - -$

N-1

N-1

$$+201.0 + 136.9 + 171.0 + 331.5$$

$$\begin{array}{c|c} R \\ R \\ H_2 N & N \\ N \\ C \\ H_2 Ph \end{array}$$

$$R = MeS$$

$$R = O N$$

in DMSO

$$R = MeS$$

$$R = O$$
 $N -$

$$R = PhNH$$

$$\frac{\text{N-1}}{+188.0}$$
 $\frac{\text{N-2}}{+108.8}$ $\frac{\text{N-4}}{+166.0}$ $\frac{\text{NH}_2}{+327.0}$

N-4

$$+212.2 + 142.8 + 187.2 + 327.9$$

(+319.7, morpholine moiety)

N-2

$$+216.0 + 151.3 + 187.2 + 327.7$$

(+319.9, morpholine moiety)

$$+216.4 + 149.8 + 184.1 + 329.7$$

(+292.2, PhNH)

Table 17. —cont.

Compound	nd Solution or state			Nitrogen shielding (ppm) referred to neat nitromethane			Notes
(4) N-N			N-1	N-3	N-4	NH ₂	(T)
MeS N(1) NH ₂ CH ₂ Ph		in DMSO	+ 227.1	+ 109.4	+72.4	+ 333.9	
H_2N N N N N N N N N	H_{2N} $N = N$ NH	ca. 35%					
<5%	H ₂ N NH	in H ₂ O	+ 138.7 + 183.9 + 175.6 +	(N_B)			(R) (R)
	H_2N N	ca. 65%	+ 336.1				(R) (R)
(C) HN (A) CI- H ₂ N NH (B)		in H ₂ O	+ 116.9 (+ 208.1 (+ 236.6 ((N_B)			(R) (R)
(dominant tautom	ner)		+ 325.3				(R) (R)
$ \begin{array}{c c} R \\ (4) & N \\ / & N \\ N Me \end{array} $ (1)		0.5 м in DMSO R = OMe	+ 184.4 (+ 128.2 (+ 157.8 ((N-2)			(Q) (Q)
		R = SMe	+ 160.8 (+ 96.9 (+ 125.0 ((N-1) (N-2)			(Q) (S) (S) (S)

(4) N-1	0.5 m in DMSO		
N (2)	R = OMe	+ 207.7 (N-1)	(Q)
R NMe		+91.7 (N-2)	$(\widetilde{\mathbf{Q}})$
(1)		+ 166.8 (N-4)	$\widetilde{(o)}$
	R = SMe	+ 174.0 (N-1)	ŚŚ
		+72.9 (N-2)	(S)
		+ 134.4 (N-4)	(Q) (S) (S) (S)
(4) N-N (3)	0.5 m in DMSO		
() L	R = OMe	+ 243.0 (N-1)	(Q)
NMe R		+ 112.0 (N-3)	(Ö) Z
(I)		+75.0 (N-4)	(Q) NITR (Q) (Q)
	R = SMe	+ 218.9 (N-1)	8 8
		+65.3 (N-3)	GF GF
		+ 60.9 (N-4)	(S) OGEN 7
(4) N-NH (3)		,	Z Z
	0.5 м in DMSO		Ŕ
NH X	X = O	+ 238.2 (N-1)	(Q) SP
(1)		+214.1 (N-3)	io e
		+ 116.9 (N-4)	E Ő
	X = S	+ 206.8 (N-1)	isi õ
		+176.0 (N-3)	$\widetilde{(s)}$
		+99.1 (N-4)	NITROGEN NMR SPECTROSCOPY
(4) N-NH (3)	0.5 m in DMSO		
(<u>)</u>		+ 244.4 (N-1)	(Q)
NMe X		+214.3 (N-3)	(Q)
(1)		+ 118.0 (N-4)	(Q)
(4) N-NMe (3)		+ 245.0 (N-1)	(Q)
(4) [4-]4/86 (3)	0.5 m in DMSO	+ 220.6 (N-3)	$(\tilde{0})$
NMe O		+ 112.3 (N-4)	(Q) (Q) ?
(1)		` ,	Q) 251

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
(4) N N NMc (2) NMc (1)	0.5 м in DMSO	+ 202.7 (N-1) + 216.8 (N-2) + 138.4 (N-4)	(Q) (Q) (Q)
MeN-NMe	in DMSO,	NMe NR	(U)
O NR O	$R = Ph$ $R = \alpha - naphthyl$	+ 315.7 + 241.7 + 316.4 + 242.2	
Me + Me N-N	in DMSO,	$NR = N NMe_2$	(U)
O NR O	$R = Pr^{i}$ $R = \alpha - naphthyl$	+ 235.0 + 167.9 + 263.0 + 238.6 + 163.7 + 261.5	
(4) N (2)	in C ₆ D ₆	N-1 N-2 N-3 NMe ₂	(u)
(Me ₂ N) ₂ PX	X = lone pair X = S	+141.3 +81.1 +124.8 +342.5 +145.6 +82.3 +124.2 +345.9	` '
Tetrazole ring systems NNN N N N N N N N N N N N N N N N N	0.5 м in DMSO	+98.3 (flanking N) +5.8 (central NN)	(a) (a)

253

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
$\stackrel{N=N}{\bigcirc} \times - \times \stackrel{N=N}{\bigcirc} \stackrel{N}{\bigcirc} \stackrel{N}{\bigcirc}$	in D ₂ O		(V)
X		N-1,4 N-2,3	
none CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₂ CH ₂ NHCH ₂ CH ₂		+71.0 -0.5 +79.2 +4.4 +79.2 +5.0 +84.1 +5.5 +72.8 -3.0 (+247.3, NH)	
(4) N-N (3) (9) N (2) N (1) H N-N	in CD₃CN	+ 78.8 (N-1,4) + 1.6 (N-2,3)	(W) (W)
(4) N=N (3) (A) N=N (2) N (1)	solid state	+ 56.4 (N-1,4) + 11.4 (N-2,3)	(W) (W)
(4) $N=N$ (3)	in DMSO	N-1 N-2 N-3 N-4	(X)
NR (2)	R = H $R = Me$	+82.2 +70.4 -3.9 +50.4 +97.3 +70.9 -4.5 +47.7	

+ 124.5 (N-4) + 110.9 (N-6)

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Oxazole and oxadiazole	ring systems		
⟨o⟩	in DMSO	+ 123.7	(a)
(1,3-oxazole)			
(1) MeN (3) (1) MeN (5) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N	in CDCl ₃	+ 132.8 (oxazole) + 107.7 (N-1) + 1.5 (N-2) + 57.1 (N-3) + 85.0 (N-5)	(Z)
(1) MeN (3) (1) MeN (5) (5) MeO O Ph	in CDCl ₃	+ 134.9 (oxazole) + 107.4 (N-1) + 1.3 (N-2) + 56.8 (N-3) + 84.9 (N-5)	(Z)
₩ N	0.5 m in DMSO	+ 131.5	(a)
\sim SMe	in DMSO	+ 114.3	(F)
NH s	in DMSO	+ 223.2	(F)

$$N_{\text{O}}^{\text{NMe}}$$
 in DMSO +230.4 (F)

 N_{O}^{N} in DMSO -2.7 (a)

≥
WITANOWSKI
Ţ
, L. STEFANIAK and G. A. WEBB
æ

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
SM2 complex with trimethoprim	in DMSO solid state	+ 36.5 + 259.7 + 309.7 + 49.0 + 245.4 + 316.0	
(N)	in CDCl ₃ 0.5 m in DMSO	+ 0.2 - 3.3	(bb) (a)
Me N	in CDCl ₃	+9.0	(bb)
Me N→O	in CDCl ₃	+ 59.5	(bb)
(No	0.5 м in DMSO	+7.5	(a)
(4) N (2) O N (2)	in Et ₂ O	+ 20 (N-2) + 140 (N-4)	(bb) (a) (bb) (a) (a) (a) (a) (R)
(1, 2, 4-oxadiazole)	in CDCl ₃	N-2 N-4 NH ₂	(R)
H ₂ N (2)	R = Me R = SMe R = OMe	+ 44.3 + 189.9 + 320.3 + 50.9 + 192.8 + 318.2 + 82.1 + 208.3 + 317.2	
(4) NH ₂	in CDCl ₃	N-2 N-4 NH ₂	(R)
$R \stackrel{N}{\longrightarrow} N$ (2)	R = OMe $R = OEt$	+71.8 +199.8 +331.9 +72.5 +199.9 +331.9	

N-N (1)	in Et ₂ O	+81	(a)
(1,3,4-oxadiazole)	in DMSO	- 33.8	(a)
(1,2,5-oxadiazole, furazan))		(u)
	in DMSO	=N-=NO-	(ee)
R R N N N O O (furoxan structure)	R = Me R = Et R = I R = Ph	+ 13.5 + 25.9 + 12.4 + 24.8 - 0.3 + 23.9 - 12.5 + 24.7	
O NO	in DMSO	-35.6	(a)
R ¹	in DMSO	$=N-=NO-NO_2$	(ee)
R NO	R = R1 = H $R = H, R1 = NO2$ $R = R1 = NO2$	+7.2 +19.2 +5.5 +19.8 +17.9 +5.2 +21.2 +16.9 +18.8	Š
0-N-0	in DMSO	+5.5 (=N-)	(ee)

+5.5 (=N-) +24.3 (=NO-)

(ee) (ee)

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Thiazole and thiadiazol	e ring systems		
₹"	in DMSO	+ 57.4	(a)
(1,3-triazole)			
RN	in DMSO	$=N-NH_2$	
Me N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	R = Me R = CH ₂ COOEt its hydrochloride R = C(=NOMe)COOEt R = C(=NOMe)COOH its solution in CF ₃ COOH its hydrochloride R = C(=NOH)COOEt its hydrochloride	+124.7 +311.5 +123.6 +307.0 +216.9 +287.1 +137.5 +305.2 +138.8 +306.2 +236.2 +297.1 +222.2 +284.5 +135.5 +306.2 +196.6 +291.5 +124.9 (=N-) +294.4 (NH)	(cc) (dd) (dd) (dd) (dd) (dd) (dd) (dd)
N S S S S S	in DMSO	+83.9	(F)
N S	in DMSO	+ 196.8	(F)

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
MeN-N OS	in CDCl ₃	+ 56.8 (=N-) + 195.5 (NMe)	(R) (R)
N-N V _S NH ₂	in DMSO	+ 81.2 (N-3 ?) + 319.2 (NH ₂)	(cc) (cc)
N-N N-N NHCH ₂ NH	in DMSO	+82.0 (N-3,3'?) +301.7 (NH)	(cc) (cc)
HN-N NH ₂	in DMSO	+ 117.4 (=N-) + 167.6 (NH)	(cc) (cc)
	in CDCl ₃	+ 319.2 (NH ₂) + 117.4 (=N-) + 167.4 (NH) + 315.6 (NH ₂)	(cc) (cc) (cc)
HN-N S NHCH ₂ NH	in CDCl ₃	+ 116.2 (=N-) + 167.9 (NH) + 299.3 (NHCH ₂)	(cc) (cc) (cc)
N S N (1,2,5-thiadiazole)	in Et ₂ O	+31	(a)
Ph Ph N N N N	in DMSO	+ 37.7	(ee)

in DMSO

(ee)

0.5м in DMSO

+49.1

(a)

in DMSO

-30.3 (N-2)

(a)

(1,2,3-thiadiazole)

-56.2 (N-3)

(a)

Phosphazole ring systems

in C_6D_6

+ 146.7 (NMe) + 13.7 (=N)

(hh) (hh)

NMe

in C_6D_6

+ 154.1 (NMe) + 35.4 (=N)

(hh) (hh)

Me NMe

in C_6D_6

+150.9 (NMe) +20.9 (=N)

(hh) (hh)

NH NH

in C_6D_6

+ 105.5 (averaged)

(hh)

in C₆D₆ or CDCl₃

(ii)

Table 17. —cont.

Compound	Solution or state	Nitrogen shielding nitromethane	(ppm) referred to neat	Notes
R		NMe N-2	N-4	
Me		+157.5 +12.1	+88.5	3
Me, complex with BF ₃			+ 142	\$
Bu, complex with BF ₃			+ 138	5
i-Pr		+159.5 + 14.9	+95.2	2
CH ₂ Ph		+156.4 + 11.8	+86.5	5
Ph		+156.5 + 10.4	+87.0	, in the second
R^1				<u> </u>
(4) N K	in C ₆ D ₆ or CDCl ₃			(ii) S
P, N (2) NR	in C _b D _b or CDCl ₃			(11)
$\mathbf{R} = \mathbf{R}^2$		NMe N-2 1	N-4	M. WILDNOWSKI, L. SIEFANIAN and G.
Me Me		+120.4 +42.7	+93.5	Ē
	its complex with BF ₃		+ 147	7
Me i-Pr	,	+122.0 +44.5	+97.7	
Me CH ₂ Ph		+119.4 + 41.6	+93.1	Ģ
	its complex with BF ₃	+119.1 + 39.6	?	
Me Ph	•	+117.8 + 42.7	+99.0	
Ph Ph		+100.3 +56.3	+100.3	* E B B
	its complex with BF ₃	+101.4 + 48.7	+ 146	ä
Mesoionic structures				
	in CH ₂ Cl ₂	+ 105 (N ⁺)		(jj)
N, N,		+ 159 (N ⁻)		(jj)

(trans-pentalene)

$$\begin{array}{c} \text{in CDCl}_{3}, \\ \text{(3)} \\ \text{(2)} \\ \text{(N-1)} \\ \text{(1)} \\ \end{array} \begin{array}{c} \text{in CDCl}_{3}, \\ \text{R} = \text{Me} \\ \end{array} \begin{array}{c} +99.4 \text{ (N-1)} \\ +103.6 \text{ (N-2)} \\ +68.9 \text{ (N-3)} \\ +137.7 \text{ (N-4)} \\ +102.5 \text{ (N-6)} \\ +100.8 \text{ (N-1)} \\ +89.0 \text{ (N-2)} \\ +69.3 \text{ (N-3)} \\ \end{array} \\ \end{array} \begin{array}{c} \text{R} = \text{Et} \\ \end{array} \begin{array}{c} \text{Et} \\ \text{(kk)} \\ \end{array} \begin{array}{c} \text{N-2} \\ \text{N-2} \\ \text{N-3} \\ \text{N-1} \\ \text{(N-1)} \\ \end{array} \begin{array}{c} \text{N-4} \\ \end{array} \end{array}$$

+309.2 (NH₂)

Q

WEBB

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Thiazole and thiadiazol	e ring systems		
φ -	in CDCl ₃		(11)
N^{+}	R = 2-pyridyl	+71.0	` '
[、	2-pirymidyl	+74.4	
\sim \sim	COOMe	+ 52.6	
Ö	1-Et-2-benzimidazolyl	+66.6	
	phenyl	+ 77.3	

- (a) See ref. 5, pp. 444-447, and references therein.
- (b) Data from ref. 693, 50.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to sat. aqueous NaNO₃, +3.7 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); originally reported vs fictitious ammonia standard taken at +376.5 ppm from the reference employed (i.e. +380.2 ppm from nitromethane), but the latter value corresponds to a perpendicular field-to-sample arrangement; we retrieved the original data and performed recalculations as shown above.
 - (c) Data from ref. 1020, details as in footnote (f).
- (d) Data from ref. 772, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); Cr(acac)₃ added as a relaxation reagent.
 - (e) Data from ref. 773, details as in footnote (d).
- (f) Data from ref. 27, 30.4 MHz ¹⁵N spectrum, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (g) Data from ref. 1114, 36.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac), added as a relaxation reagent.
 - (h) Data from ref. 363, 30.4 MHz ¹⁵N CPMAS spectra, referenced originally to aqueous NH₄Cl, +352.9 ppm from neat nitromethane (Table 2).
- (i) Data from ref. 1115, 50.7 MHz 15 N spectra, other details as in footnote (f); also CPMAS spectra for the solid state, ref. 357.
- (j) Data from ref. 1116, details as in footnote (i).
- (k) Data from ref. 807, 25.35 and 20.29 MHz ¹⁵N spectra, other details as in footnote (f).
- (I) Data from ref. 99, 30.41 MHz ¹⁵N INEPT and SINEPT-2 spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (m) Data from ref. 173, details as in footnote (l).

- (n) Data from ref. 1117, ¹⁵N-labelling, 25.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to aqueous NO₃⁻, +3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1.)
- (o) Data from refs 127 and 1118, 36.54 MHz ¹⁵N INEPT and DEPT spectra, field parallel to sample tube, referenced originally to 0.5 m KNO₃, + 3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (p) Data from ref. 1119, details as in footnote (o).
 - (q) Data from ref. 1120, details as in footnote (o).
- (r) Data from ref. 435, ¹⁵N label, 9.12 MHz ¹⁵N CPMAS spectra, referenced originally to solid NH₄Cl, +341.0 ppm from neat nitromethane (Table 2), conversion scheme IV (Table 1). Porphin shows dynamic NMR effects upon temperature variation while porphycen shows a sharp peak at high temperatures which splits into four sharp peaks whose spacing grows with the decreasing temperature; the former reflects changes in the rate of intramolecular proton migration, and the latter indicates at two independent migration pathways and fast migration even at the lowest temperatures examined. See also refs. 427, 432, 434, 439 and 545 for dynamic effects in ¹⁵N spectra in porphyrin systems.
- (s) Data from ref. 1045, 14.4 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to sat. aqueous NaNO₃, +3.7 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (t) Data from ref. 1121, details as in footnote (u), but neat nitromethane as reference, uncorrected for bulk susceptibility effects.
- (u) Data from ref. 83, 20.3 MHz ¹⁵N spectra and 14.4 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to 0.1 m nitromethane in CDCl₃, +3.8 ppm from neat nitromethane (Table 26), conversion scheme IIb (Table 1).
- (v) Data from ref. 812, ¹⁵N doubly labelled pyrazole, 25.36 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; originally reported vs fictitious ammonia standard taken at + 380.2 ppm from nitromethane (actually, the latter value corresponds to a perpendicular field-to-sample arrangement, see Table 2).
- (w) Data from ref. 1122, ¹⁵N-labelled pyrazole, 50.68 and 18.25 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1)
- (x) Data from ref. 1058, 27.25 and 20.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane via a calibrated sample of 6 M NH₄NO₃ in 2 M HNO₃, uncorrected for bulk susceptibility effect.
- (y) Data from ref. 1123, 40.5 MHz ¹⁵N spectra, field parallel to sample tube, referenced ot neat nitromethane, uncorrected for bulk susceptibility effects.
 - (z) Data from ref. 20, details as in footnote (y).
- (A) Data from ref. 754, ¹⁵N double label, 20.282 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); reported originally vs liquid ammonia taken at +375.8 ppm from the reference employed.
 - (B) Data from ref. 1088, 40.55 MHz ¹⁵N spectra, other details as in footnote (w).
- (C) Data from ref. 391, ¹⁵N-labelled imidazole moieties in histidine, 29.82 MHz ¹⁵N CPMAS spectra, referenced originally to 1 M HNO₃, (+ 6.2 ppm from neat nitromethane (Table 2) conversion scheme, II, Table 1), via a calibrated sample of solid ammonium sulphate, see also ref. 5, p. 372, and references therein.

- (D) Data from ref.1124, 25.35 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; originally reported vs fictitious ammonia standards, see comments in footnote (v).
 - (E) Data from ref. 665, 50.7 MHz ¹⁵N spectra, other details as in footnote (g).
- (F) Data from ref. 1081, $8.059 \,\text{MHz}^{15} \,\text{N}$ spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported originally vs liquid ammonia taken at $+380.2 \,\text{ppm}$ from nitromethane.
- (G) Data from ref. 774, ¹⁵N selective labelling, 24.426 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄ in aqueous NH₄NO₁, +259.6 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (H) Data from ref. 22, details as in footnote (y), proton-coupled and decoupled spectra.
- (I) Data from ref. 542, details as in footnote (g).

Table 17. —cont.

- (J) Data from ref. 24, details as in footnote (y).
- (K) Data from ref. 798, 25.33 MHz ¹⁵N spectra, other details as in footnote (y).
- (L) Data from ref. 1125, ¹⁵N-labelled imidazole, 27.4 MHz ¹⁵N spectra, other details as in footnote (y).
- (M) Data from ref. 1126, details as in footnote (g).
- (N) Data from ref. 1127, 25.352 MHz ¹⁵N spectra, calibration as in footnote (v); Cr(acac)₃ added as a relaxation reagent, solutions in what was termed as "common solvents", probably DMSO and CDCl₃.
 - (O) Data from ref. 1128, 40.5 MHz ¹⁵N spectra, calibration as in footnote (v); Cr(acac), added as a relaxation reagent.
- (P) Data from ref. 800, ¹⁵N doubly labelled triazole moiety, 20.3 MHz ¹⁵N spectra, calibration as in footnote (w).
- (Q) Data from ref. 25, details as in footnote (y).
- (R) Data from ref. 1036, 40.55 MHz ¹⁵N spectra, other details and comments as in footnote (v).
- (S) Data from ref. 26, details as in footnote (y).
- (T) Data from ref. 1060, 40.544 MHz ¹⁵N spectra, referenced originally to *internal* nitromethane in the solvent employed (DMSO), -2.0 ppm from neat nitromethane (Table 2), conversion scheme I (Table 1).
 - (U) Data from ref. 1129, 50.7 MHz ¹⁵N spectra, other details as in footnote (f).
- (V) Data from ref. 1034, 30.4 MHz 15 N spectra, field parallel to sample tube, and 10.13 MHz 15 N spectra, field perpendicular to sample tube; for non-aqueous solutions, the original reference was nitromethane +10% C₆D₆, ca. +0.4 ppm from neat nitromethane, as can be reckoned from the data in Table 26, conversion scheme II (Table 1): for aqueous solutions, the nitrate ion in aqueous ammonium nitrate, +4.0 ppm from neat nitromethane (Table 2), was employed as an external reference, conversion as above, Cr(acac)₃ was added as a relaxation reagent for non-aqueous solutions.
- (W) Data from ref. 356, 50.7 MHz ¹⁵N solution spectra, field parallel to sample tube, and 27.3 MHz ¹⁵N CPMAS spectra, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; the gegenion was the nonprotanated form of N,N,N,N-tetramethyl-1,8-diaminonaphthalene.
 - (X) Data from refs 23 and 29, 40.5 MHz ¹⁵N spectra, other details as in footnote (f).

- (Y) Data from ref. 648, ¹⁵N selective labelling, 40.56 MHz ¹⁵N spectra, other details as in footnote (g).
- (Z) Data from ref. 1130, 25.35 MHz ¹⁵N DEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; reported originally vs fictitious ammona standard taken at + 380.2 ppm from neat nitromethane, see comments in footnote (v).
- (aa) Data from ref. 523, 27.25 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄ in 6M NH₄NO₃ in 2M HNO₃,
- + 359.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); also 30.42 MHz ¹⁵N CPMAS spectra, referenced to solid NH₄NO₃.
- + 358.4 ppm from neat nitromethane, uncorrected for bulk susceptibility effects. For the structure of trimethoprim, see Table 19.
- (bb) Data from ref. 1131, details as in footnote (y).
- (cc) Data from refs 760 and 1059, 20.3 MHz ¹⁵N spectra, other details as in footnote (w).
- (dd) Data from ref. 805, details as in footnote (U).
- (ee) Data from ref. 1132, details as in footnote (U); Cr(acac), added as a relaxation reagent.
- (ff) Data from ref. 881, 30.454 MHz ¹⁵N proton-coupled spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (gg) Data from ref. 730, ¹⁵N-labelled compounds, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (hh) Data from ref. 818, 20.3 MHz ¹⁵ N spectra and 14.4 MHz ¹⁴ N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (ii) Data from ref. 910, 30.416 MHz ¹⁵N spectra, other details as in footnote (hh); Cr(acac), added as a relaxation reagent.
- (jj) Data from ref. 90, 4.33 MHz ¹⁴N spectra, concentric spherical sample/reference containers in order to eliminate bulk susceptibility effects, differential saturation techniques combined with lineshape fitting, referenced to external neat nitromethane, +35°C.
- (kk) Data from ref. 1133, 50.7 MHz ¹⁵N spectra and 36.15 MHz ¹⁴N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; see also ref. 1134.
- (II) Data from ref. 1135, 30.42 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to aqueous NaNO₃, + 3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); Cr(acac)₃ added as a relaxation reagent.

Table 18. Nitrogen shieldings in azolo-azine systems and related heterocycles

Compound	Solution or state	Nitrogen shieldings (ppm) referred to neat nitromethane	Notes
Indolizine structures	-		
	0.25 m in		
i v	cyclohexane	+ 190.90	(a)
(indolizine)	Et ₂ O	+ 190.69	(a)
(maoneme)	CCl₄	+ 191.04	(a)
	benzene	+ 190.74	(a)
	dioxane	+ 189.97	(a)
	acetone	+ 189.93	(a)
	DMSO	+ 189.04	(a)
	CH ₂ Cl ₂	+ 190.02	(a)
	CHCl ₃	+ 189.99	(a)
	EtOH	+ 190.07	(a)
	MeOH	+ 189.93	(a)
	H ₂ O (0.01 M) CF ₃ CH ₂ OH	+ 189.19 + 189.75	(a) (a)
(1) N	0.25 м in	N-1 N-4	
	cyclohexane	+132.85 +180.06	(a)
(4)	Et ₂ O	+ 134.97 + 179.77	(a)
	CCl ₄	+135.44 +180.21	(a)
	benzene	+ 136.03 + 180.14	(a)
	dioxane	+136.74 +179.00	(a)
	acetone	+ 138.42 + 179.00	(a)
	DMSO	+ 139.19 + 178.04	(a)
	CH ₂ Cl ₂	+141.60 +179.41	(a)

-	,
_	1
_	3
_	4
2	•
Ŝ)
Č	`
=	í
4	3
•	4
_	
4	_
7	•
-	•
7	7
r	^
טלנכ	ž
ď	Ξ.
Ľ	
Ţ	5
-	•
כ	J
	ì
>	ζ.
×	2
۶	2
֡֡֜	2
٦	0
-	2
	٦.

271

(a)

(a) (a)

(a)

(a) (a)

(a)

(a)

(a)

(a) (a) (a)

(a) (a) (a)

(a)

benzene

dioxane

acetone

DMSO

CH₂Cl₂

+92.24

+92.05

+93.15

+93.23

+144.66

+144.07

+144.40

+144.09

+95.51 +144.25

Compound	Solution or state	Nitrogen shieldings (ppm) referred to neat nitromethane	Notes
	CHCl ₃	+ 97.43 + 144.50	(a)
	EtOH	+103.68 + 145.05	(a)
	МеОН	$+\ 105.98 + 146.08$	(a)
	$H_2O(0.1 \text{ M})$	+110.18 + 146.08	(a)
	CF ₃ CH ₂ OH	+115.79 +147.20	(a)
(1)	0.5 м in DMSO	+ 139.8 (N-1)	(b)
/EN		+ 102.0 (N-3)	(b)
N-N (3)		+ 148.1 (N-4)	(b)
(1)	0.5 м in DMSO	+80.9 (N-1)	(b)
N,		+49.5 (N-2)	(b)
N (2)		+ 183.6 (N-4)	(b)
(4)	0.2 м in DMSO	+ 24.9 (N-2)	(b)
N (2)		+44.2 (N-3)	(b)
(4) (3)		+ 120.6 (N-4)	(b)
(1)	0.5 м in DMSO	+ 67.8 (N-1)	(b)
N,		-18.3 (N-2)	(b)
N (2)		+34.4 (N-3)	(b)
\sim (4) \sim (3)		+ 128.3 (N-4)	(b)

+84.5(N-8)

Table 18. —cont.

Compound	Solution or state	Nitrogen shieldings (ppm) referred to neat nitromethane	Notes
(1) (1) N	0.5 м in DMSO	+ 63.0 (N-1)	(c)
N (2)		- 19.5 (N-2)	(c)
$N-N_{(3)}$		+ 30.9 (N-3) + 124.8 (N-4)	(c) (c)
		+ 124.6 (14-4) + 53.7 (N-7)	(c)
(1) N	0.5 м in DMSO	+ 69.8 (N-1)	(e)
N (2)		-20.6 (N-2)	(e)
$(6) \sim (4) N_{(3)}$		+ 34.6 (N-3)	(e)
		+ 127.9 (N-4)	(e)
		+ 109.0 (N-6)	(e)
N	0.5 м in DMSO	+ 192.4	(d)
	0.5 м in DMSO	+ 102.1 (N=)	(e)
N N N		+ 165.4 (central N)	(e)
Me 			
N Me + N N	in DMSO	+ 53.6 (2-N=)	(g)
		$+159.4 (2-N^+)$	(g)
T _O I ₋			

(h)

Purines and related structures (see also Table 22)

Table 18. —cont.

Compound	Solution or state	Nitrogen shieldings (ppm) referred to neat nitromethane	Notes
R^{1} N	in DMSO		(h)
R^1 R^2 R^3		N-1 N-3 N-7 N-9 NH ₂	
H CI X	(in CDCl ₃)	+105.7 +112.2 +217.6 +138.4 -	
NH ₂ H Me Me Me Me CH ₂ CH ₂ -		+141.1 +160.6 +230.0 +138.4 +303.4	
NH ₂ Cl MeCO(CH ₂) ₄ — NH ₂ Cl Me(CH ₂) ₄ —		+ 143.3 + 163.8 + 227.8 + 141.0 + 301.3 + 143.1 + 163.7 + 227.3 + 141.2 + 302.2	
NH ₂ Cl Me He CH ₂ CH ₂ -	(+TFA)	+143.8 +164.3 +229.0 +141.5 +301.4 +141.6 +172.6 +225.1 +167.6 +300.2	

+113.2

+114.3

+114.9 + 175.8

+175.4

+202.3

Other azolo-azines without a bridgehead nitrogen atom

pH = 5.7

pH = 7.4

pH = 9.3

70% 9-NH

Table 18. —cont.

Compound	Solution or state	Nitrogen shieldings (ppm) referred to neat nitromethane	Notes
R 	0.5 м in DMSO	NR —N=	(k)
	R = H $R = Me$	+ 251.1 + 111.2 + 260.4 + 114.9	
R İ	0.5 м in DMSO	NR -N=	(k)
N N N	R = H $R = Me$	+ 268.3 + 64.9 + 276.2 + 65.2	
R	0.5 m in DMSO	NR -N=	(k)
N N N	R = H $R = Me$	+ 256.5 + 88.3 + 264.3 + 88.9	
R I	0.5 m in DMSO	NR -N=	(k)
N N N N N N N N N N N N N N N N N N N	R = H $R = Me$	+ 271.1 + 78.6 + 279.4 + 78.9	
Me (9) (1)	0.5 m in DMSO	+ 232.2 (NMe) + 173.5 (N-9) + 105.8 (N-1)	(k) (k) (k)
N N N N N N N (4)	0.5 м in DMSO	+ 209.1 (NMe) + 179.9 (N-9) + 87.3 (N-4)	(k) (k) (k)

Table 18. —cont.

Compound	Solution or state	Nitroger nitromet		gs (ppm) re	eferred to	neat	Notes
O (I)		N-1	N-2	N-3	N-4	N-6	(m)
Me N NH (2) NH (3) Me	in DMSO in DMF	+ 55.2 + 55.7	? + 111.7	+ 90.2 + 89.7	+ 276.3	+ 227.9 + 227.9	
O Me (6) N (1) (7) N (2) N (4) N (3) Me	in CDCl ₃	+ 150.0	+ 9.7	+66.5	+ 275.2	+ 228.5	(m)
Me (1) (6) N NMe (2) NMe (3) Me	in CDCl ₃	+ 47.0	+ 134.1	+84.3	+ 277.8	+ 228.5	(m)
Me (6) N (1) N (2) N (4) N (3) Me Me	in DMSO	+ 33.3	+ 18.0	+ 163.9	+ 275.1	+ 231.1	(m)
(1) (7) (2) N N N		N-1	N-2	N-4	N-5	N-7	(n)
Mes N NH (5)	in DMSO (68% 5-NH)	-4.8	+40.2	+ 131.1	?	?	

in DMSO
$$-11.7 + 41.1 + 139.5 + 234.4 + 141.0$$
 (n)

Mes $N_{(4)}$ NMe (5)

in DMSO $+12.5 + 41.3 + 117.6 + 144.2 + 235.3$ (n)

Mes $N_{(4)}$ N(5)

- (a) Data from ref. 533, high precision 14 N spectra, 36.14MHz, field parallel to sample tube, referenced to neat nitromethane, *corrected* for bulk susceptibility effects; temperature $+35.0 \pm 0.3^{\circ}$ C, Lorentzin lineshape fitting employed.
 - (b) See ref. 5, pp. 478-481, and ref. 90, and references therein.
- (c) Data from ref. 27, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (d) Data from ref. 1136, details as in footnote (e).
- (e) Data from ref. 65, 50.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
- (f) Data from ref. 835, 30.42 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (g) Data from ref. 827, ¹⁵N-labelled N-2, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to what was termed as "concentrated HNO₃"; we assumed that it was 70% HNO₃, +31.3 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1), but a large error is likely to be involved in view of the high sensitivity of HNO₃ nitrogen shielding to the concentration of the acid.
- (h) Data from ref. 123, 27.4 MHz ¹⁵N spectra, NOE suppressed, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; abberviations used -X = p-Me-C₆H₄—COO, TFA = CF₃COOH.
- (i) Data from ref. 1137, 36.53 MHz ¹⁵N spectra (proton-coupled and decoupled), field parallel to sample tube, referenced originally to neat nitromethane via a calibrated sample of formamide, uncorrected for bulk susceptibility effects.
- (j) Data from ref. 538, 40.56 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (k) Data from ref. 21, 40.5 MHz ¹⁵N spectra, other details as in footnote (e).
- (l) Data from ref. 772, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to 1 m HNO₃, + 6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (m) Data from ref. 122, 25.4 MHz ¹⁵N spectra (DEPT and conventional), referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported vs fictitious ammonia standard taken at +380.2 ppm from nitromethane (the latter value corresponds actually to a perpendicular field-to-sample arrangement, see Table 1).
- (n) Data from ref. 819, 50.7 MHz ¹⁵N spectra (NOE suppressed), field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.

Table 19. Nitrogen shieldings in azines and related heterocycles, their ions and N-oxides

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
	gaseous	+ 54.6	(a)
	neat liquid	+62.0	(b)
N/	inf. dil in		
(pyridine)	cyclohexane	+ 57.7	(b)
,	ČCl₄	+60.5	(b)
	benzene	+61.1	(b)
	DMSO	+63.1	(b) (b) (b) (b) (b) (b)
	CH_2Cl_2	+65.3	(b)
	CHCl ₃	+ 68.7	(b)
	MeOH	+81.1	(b)
	in H ₂ O	+84.3	(b)
	CF ₃ CH ₂ OH	+96.1	(b)
	0.5 м in 10 м HCl	+ 178.96	(a)
	0.5 м in CF ₃ COOH	+ 182.5	(a)
(pyridinium ion)	0.5 m in FSO₃H	+ 186.9	(a)
н (Руссынали голу	solid, NO ₃	+ 167 (isotropic)	(c)
		$+44 (\sigma_{xx})$	(c)
		$+96 (\sigma_{yy})$	(c) (c)
		$+360 (\sigma_{zz})$	(c)
	solid, I	+ 175 (isotropic)	(c)
		$+86 (\sigma_{xx})$	(c)
		$+86 (\sigma_{yy})$	(c)
		$+354 (\sigma_{zz})$	(c)
	0.008 м in cyclohexane	+ 76.47	(d)
(pyridine N-oxide)	0.064 м in Et ₂ O	+ 78.78	(d)

	0.128 м in CCl ₄	+80.84	(d)
	0.25 м in benzene	+81.36	(d)
	0.25 м in dioxane	+81.40	(d)
	0.25 м in acetone	+82.85	(d)
	0.25 м in DMSO	+85.64	(d)
	0.25 м in CH ₂ Cl ₂	+85.66	(d)
	0.25 м in CHCl ₃	+86.78	(d)
	0.25 м in EtOH	+97.06	(d)
	0.25 м in MeOH	+97.53	(d)
	0.25 м in H ₂ O	+ 106.47	(4)
	0.25 м in CF ₃ CH ₂ OH	+ 106.61	(d) \(\frac{1}{2}\)
Pyridine	ca. 1 M in CDCl ₃		(g) Õ
+ proton donors	free pyridine	ca. +67	
(CF ₃ CH ₂ OH, PhOH,	H-bonded pyridine	ca. +93	
MeCOOH, CCI, COOH,	pyridinium ion	ca. + 185	Ź
CF ₃ COOH)	P 3		⊼
Pyridine adsorbed on HY-	shallow-bed actived	+ 168 to + 175	NITROGEN NMR SPECTROSCOPY (d) (g) (e) (e) (f)
zeolites	deep-bed activated	+ 121 to + 145	(e) TR
200	usep can use and	1 121 00 1 10	(°) ĝ
Pyridine absorbed on	solid samples		(f) Š
γ-alumina.	.		e e e e e e e e e e e e e e e e e e e
partially dehydroxylated		+ 107, + 128	*
intermediately hydroxylated		+110, +133	
extensively dehydroxylated		+113, +127	
upon partial exposure to air		+113	
upon prolonged exposure to		+82	
Pyridine adsorbed on			
coals:	solid samples		(c)
bituminous	· · · · · · · · · · · · · · · · · · ·		(6)
			œ

+78.7 (isotropic)

fresh Illinois No. 6

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
		$+98 (\sigma_{xx})$	
		$+41 \left(\widehat{\sigma}_{yy} \right)$	
		$+360 (\sigma_{zz}^{"})$	
Devco		+ 79 (isotropic)	
sub-butuminous		• /	
Whitewood and oxidized Illinois No. 6		+79, +150	
Me Me	ca. 17 mol%		(h)
Y	in solvents specified:		(-)
L.J	n-hexane	+ 59.2	
N	Et ₂ O	+60.4	
	MeOCH ₂ OH ₂ OMe	+61.7	
	tetrahydrofuran	+61.8	
	neat liquid	+ 62.3	
	acetone	+ 62.3	
	benzene	+62.3	
	CCl ₄	+62.4	
	dimethylformamide	+63.3	
	pyridine	+63.4	
	DMSO	+63.8	
	MeCOCH ₂ COMe	+63.9	
	nitrobenzene	+64.0	
	MeCN	+64.2	
	MeNO ₂	+65.0	
	PhSH	+66.4	
	CH ₂ Cl ₂	+ 66.6	
	CHCl ₃	+69.8	
	MeNHCHO	+ 73.8	

	EtOH	. 77.3	
	$H_2O + 10\%$ acetone	+ 77.2 + 79.0	
	MeOH	+ 79.0 + 80.0	
	m-cresol	+ 80.0 + 92.6	
	CF ₃ CH ₂ OH	+ 92.8	
	2-Cl-phenol	+ 92.6 + 97.7	
	2-Br-phenol	+ 97.7 + 97.9	
	2-F-phenol	+ 104.2	
	MeCOOH	+ 143.7	
	НСООН	+ 176.6	
	CF ₃ COOH	+ 170.0	
	C13C0011	7 104.3	
Substituted pyridines; with substituent(s):			
none	in DMSO, $+68^{\circ}$ C	+63.3	(i)
	I M in CH ₂ Cl ₂	+63.0	Ö
	$1 \text{ M in } CH_2Cl_2 + CF_3COOH$	+ 147.5	(i)
3-Me	in DMSO, +68°C	+61.8	őí
	1 M in CH ₂ Cl ₂	+ 66.8	Ğ
	$1 \text{ M in } CH_2Cl_2 + CF_3COOH$	+ 150.7	ζij
4-Me	in DMSO, +68°C	+70.3	ĭi)
	1 m in CH ₂ Cl ₂	+ 74.6	ίί
	1 м in CH ₂ Cl ₂ + CF ₃ COOH	+ 159.3	ζί)
3,5-Me ₂	1 м in CH ₂ Cl ₂	+66.6	(i)
•	1 M in CH ₂ Cl ₂ + CF ₃ COOH	+ 153.5	(i)
2,4-Me ₂	1 м in CH ₂ Cl ₂	+ 75.4	(i)
_	$1 \text{ M} \text{ in } CH_2Cl_2 + CF_3COOH$	+ 161.9	(j)
$2,6-Me_2$	1 m in CH ₂ Cl ₂	+68.1	(i)
, •	1 м in CH ₂ Cl ₂ + CF ₃ COOH	+ 158.4	(j)
2,4,6-Me ₃	1 м in CH ₂ Cl ₂	+ 75.8	(j)
-	1 M in CH ₂ Cl ₂ + CF ₃ COOH	+ 168.4	
4-Et	in DMSO, +68°C	+69.6	(i)
4-Pr	in DMSO, $+68^{\circ}$ C	+68.6	(i)
	* *		• • •

Table 19. —cont.

Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
4-Bu ^t		in DMSO, +68°C	+68.8	(i)
			+ 104.7 (ring)	(O)
$4-NMe_2$		in MeNO ₂ , $+55^{\circ}$ C	$+352.0 \text{ (NMe}_2)$	(O)
2-OCH=	=CH ₂	neat + 20% CCl ₄	+ 112.5	(P) (j) (j) (j) (j) (j) (i)
3-CN		1 м in CH ₂ Cl ₂	+65.8	(i)
		$1 \text{ m in } CH_2Cl_2 + CF_3COOH$	+ 100.0	$\ddot{\Omega}$
4-CN		1 m in CH ₂ Cl ₂	+ 52.1	(i)
		$1 \text{ m in } CH_2Cl_2 + CF_3COOH$	+98.1	(i)
3-Br		1 м in CH ₂ Cl ₂	+ 59.9	(i)
		$1 \text{ m in } CH_2Cl_2 + CF_3COOH$	+113.8	(j)
4-COPh		in DMSO, $+68^{\circ}$ C	+ 52.3	
4-COOM	le .	in DMSO, $+68^{\circ}$ C	+61.7	(i)
2,3,4,5,6-	F ₅	in acetone-d ₆	+ 145.9	(k)
F N XeF*	F	in HF, -30°C	+ 208	(1)
\sim R	R = H	0.7 м in DMSO	+ 78.9	(m)
ſΥ	R = H R = COOH	2 m in DMSO	+ 78.9 + 71.6	(n)
() () ()	R = COOMe	2 m in DMSO		(n)
N SMe	K = COOME	2 m III DIVISO	+ 72.1	(11)
\nearrow R	R = H	0.7 м in DMSO	+ 187.4	(m)
11 1	R = COOH	2м in DMSO	+ 175.2	(n)
NMe c	R = COOMe	2 m in DMSO	+ 178.7	(n)
	K = COOMC	2 III III DIVIDO	• • • = • •	` '

Table 19. —cont.

Compo	und		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
$R = \sqrt{\frac{1}{2}}$	N-R1	x-	in DMSO		(p)
R	\mathbf{R}^1	X			
H Me t-Bu CN COMe NMe ₂ OMe Br Me CN H Me t-Bu NMe ₂ H Me t-Bu CN NMe ₂	Me Me Me Me Me Me Me Me Et Et i-Pr i-Pr i-Pr CH ₂ Ph CH ₂ Ph CH ₂ Ph CH ₂ Ph	I I I I I I Br Br Br Br Br Br Br Br		+ 178.2 + 182.8 + 180 + 170.2 + 171.5 + 221 + 194 + 181 + 171 + 155.8 + 153 + 158.6 + 160 + 197 + 162 + 166 + 171 + 157.3 + 196	
H NO ₂ OMe	OH OH	Cl Cl Cl		+ 110 + 81 + 137	

```
Substituted pyridine
                                in DMSO, +68^{\circ}C
                                                                                                                (i)
N-oxides, with
substituent(s):
  none
                                                                  +87.6, +84.0 (?)
  3-Me
                                                                  +87.6
  4-Me
                                                                  +96.4, +90.1 (?)
  4-Et
                                                                  +88.4
  4-i-Pr
                                                                  +88.4
  4-t-Bu
                                                                  +88.8
  4-Ph
                                                                  +85.9
  4-COPh
                                                                  +75.4
  4-COMe
                                                                  +74.8
  4-COOMe
                                                                  +74.4
  4-CN
                                                                  +74.9
  4-NO2
                                                                  +70.5
        N — C (COOMe)<sub>2</sub>
                               in DMSO, +68°C
                                                                                                                (i)
R
Н
                                                                  +160.3
4-Me
                                                                  +166.6
4-Et
                                                                  +166.3
4-i-Pr
                                                                  +165.9
4-t-Bu
                                                                  +166.0
4-Ph
                                                                  +165.1
4-COPh
                                                                  +156.5
4-CN
                                                                  +152.9
Substituted
  substituent(s):
                               in DMSO, +68°C
                                                                                                                (i)
                                                                                                                        289
  none
                                                                  +161.4
```

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
3-Me		+162.0	
4-Me		+ 168.5	
3,5-Me ₂		+ 162.4	
3,4-Me ₂		+ 168.5	
4-Et		+ 167.9	
4-Pr		+ 167.9	
4-i-Pr		+ 167.6	
4-t-Bu		+ 167.7	
4-CH ₂ Ph		+ 166.9	
4-COPh		+ 155.6	
4-COMe		+ 155.0	
3-COOMe		+ 160.2	
4-COOMe		+ 153.9	
3-CN		+ 157.9	
4-CN		+ 153.9	
	0.15 м in cyclohexane	- 35.31	(q)
L ^N >N	0.15 м in Ét ₂ O	-31.01	(q)
	0.15м in CCl₄	-29.35	(q)
(pyridazine: 1,2-diazine)	0.15 m in benzene	-27.80	(q)
	0.15 м in dioxane	-26.74	(q)
	0.15 м in acetone	-25.85	(q)
	0.15 м in DMSO	-20.93	(q)
	0.15 м in CH ₂ Cl ₂	-20.19	(q)
	0.15 м in CHCl ₃	– 19.01	(q)
	0.30 м in EtOH	-10.50	(q)
	0.15 м in MeOH	-6.32	(q)

	0.15 м in H ₂ O 0.30 м in CF ₃ CH ₂ OH	+6.24 +13.2	(q) (q)
Substituted pyridazines, with substituent(s): 3-Me 3,6-Me ₂ 3,4,5,6-F ₄	in CDCl ₃ in CDCl ₃ in acetone-d ₆	- 17.6 (N-1) - 14.3 (N-2) - 12.1 (N-1,2) + 51.6 (N-1,2)	(r) (r) (r) (k)
O Me N O N O N O N O N O N O N O N O N O N	in DMSO in acetone	+ 43.4 \ azine + 44.5 \ ring + 39.7 \ azine + 40.8 \ ring	(s) (s)
(pyrimidine; 1,3-diazine)	0.20 m in cyclohexane 0.20 m in CCl ₄ 0.20 m in Et ₂ O 0.20 m in benzene 0.20 m in dioxane 0.20 m in acetone 0.20 m in DMSO 0.20 m in CH ₂ Cl ₂ 0.20 m in CHCl ₃ 0.20 m in EtOH 0.20 m in MeOH 0.20 m in H ₂ O 0.30 m in CF ₃ CH ₂ OH	+ 80.30 + 81.59 + 81.81 + 82.83 + 82.99 + 83.41 + 83.90 + 85.25 + 86.21 + 88.67 + 90.84 + 97.14 + 98.2	(q) (q) (q) (q) (q) (q) (q) (q) (q) (q)

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Substituted pyrimidines, with substituent(s):			
2,4-Cl ₂ -6-Me	0.4 m in CDCl ₃	+ 91.5 (N-1) + 98.7 (N-3)	(t) (t)
2-Cl-6-Me	0.4 m in CDCl ₃	+ 87.3 (N-1) + 96.0 (N-3)	(t) (t)
$2-Cl-4,6-Me_2$	0.4 m in CDCl ₃	+95.2 (N-1,3)	(t)
4,6-Me ₂	0.4 м in CDCl ₃	+94.6 (N-1,3)	(t)
5-NO ₂	in CHCl ₃	+ 83.8 (N-1,3) + 19.3 (NO ₂)	(u) (u)
	in DMSO	+84.6 (N-1,3) + $16.7 (NO2)$	(u) (u)
4-OMe-5-NO ₂	in CHCl ₃	+ 106.1 (N-1) + 121.5 (N-3)	(u) (u)
2-SMe-5-NO ₂	in CHCl ₃	+ 18.8 (NO ₂) + 97.8 (N-1,3)	(u) (u)
2-SO ₂ Me-5-NO ₂	in DMSO	$+19.2 (NO_2)$ +94.4 (N-1,3)	(u) (u)
2,4,5,6-F ₄	in acetone-d ₆	$+18.1 (NO_2) + 152.3$	(u) (k)

(x)

(x)

+167.3 (N-1)

+ 197.8 (N-5)

in CDCl₃

E_tOOC

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
EtOOC (5) (6) R (7)			
R R ¹	in CDCl ₃	N-1 N-5	(x)
none Me	$(+CF_3COOH)$	+267.3 +232.2 +242.0 +196.6	
none H	$(+CF_3COOH)$	+ 247.1 + 231.5 + 246.9 + 216.4	
6-Me Me 6-Me H		+268.3 + 222.5	
	$(+CF_3COOH)$	+ 251.6 + 221.6 + 244.7 + 201.9	
7-Me H 8-Me H	$(+CF_{3}COOH)$	+ 247.6 + 231.8 + 248.5 + 231.8 + 245.4 + 214.9	
(I) СНОМе N Ц	in CDCl ₃	N-1 N-5	(x)
E100C (5)	$R = H \\ (+CF_3COOH)$	+ 161.8 + 244.6 + 248.8 + 224.6	
ÖR	R = Me	+ 161.2 + 193.5	

$$R \xrightarrow{(1)} N \\ N \\ N \\ (5) \\ R^1$$

R	\mathbf{R}^1	in CDCl ₃
COOEt	H	
COOEt	Me	$(+CF_3COOH)$
COOL	IVIC	$(+CF_3COOH)$
CH ₂ COOEt	Me	$(+CF_{3}COOH)$

EtOOC

$$(+CF_3COOH)$$
 + 229.7
+ 144.9
 $(+CF_3COOH)$ + 222.8

$$R = M$$

in liquid
$$NH_3$$

 $R = H$

$$R = SMe$$

$$R = SO_2Me$$

+187.8

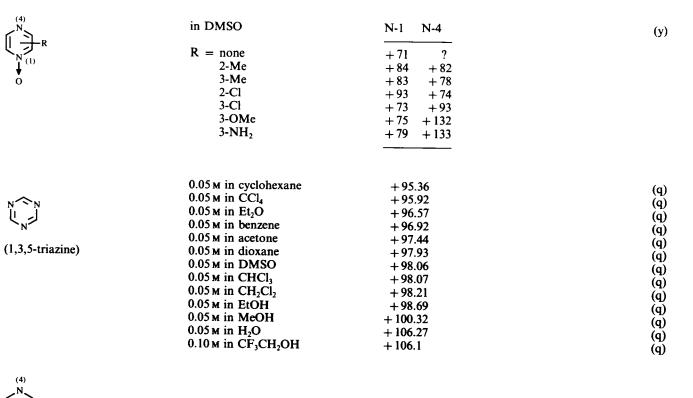
+168.8

N-1

+145.5

+226.3

+163 (NH)


(u)

(x) (x)

(x)

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes	
, N	0.20 м in cyclohexane	+ 42.17	(q)	
()	0.20 м in CCl ₄	+ 43.36	(q)	
C _N ⊅	0.20 м in Et ₂ O	+ 43.40	(q)	
	0.20 м in benzene	+ 44 .77	(q)	
(pyrazine; 1,4-diazine)	0.20 м in dioxane	+ 44.81	(q)	
	0.20 м in acetone	+ 44.88	(q)	
	0.20 м in DMSO	+ 45.34	(q)	
	0.20 м in CH ₂ Cl ₂	+46.93	(q)	
	0.20 м in CHCl ₃	+47.80	(q)	
	0.20 м in EtOH	+ 49.51	(q)	
	0.20 м in MeOH	+ 51.70	(q)	
	0.20 м in H ₂ O	+ 59.02	(q)	
	0.30 м in CF ₃ CH ₂ OH	+ 58.0	(q)	
Substituted pyrazines,				
with substituent(s):	in DMSO	N-1 N-4	(y)	
none		+48 +48		
2-Me		+56 +54		
2-OMe		+111 +45		
2-NH ₂		+115 + 54		
2-Cl		+64 +44		
2-COOH		+55 +53		
		+ 47.4 + 45.4	(0)	
its complex with H ₂ Rh(PPh ₃) ₂		+93.7 + 49.6	(o)	
2-CONH ₂		+66 +52		
2,3,5,6-F ₄	in acetone-d ₆	+102.5 + 102.5	(k)	

in DMSO
$$\begin{array}{c} -39.8 \text{ (N-1)} \\ -1.8 \text{ (N-2)} \\ (1) \\ (1,2,4-\text{triazine}) \end{array}$$
 (y)
$$\begin{array}{c} (y) \\ -1.8 \text{ (N-2)} \\ +62.2 \text{ (N-4)} \end{array}$$
 (y)

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane		
Substituted 1,2,4,-triazines substituent:	in DMSO	N-1 N-2 N-4	(y)	
3-NH ₂ 3-OMe 3-SMe		-35.5 +61.2 +130.2 -35.8 +58.2 +126.6 -31.8 +29.2 +98.2		
(4) N R	in DMSO	N-1 N-2 N-4	(y)	
N(1)	$R = NH_2$ $R = OMe$	+51.3 +107.2 +151.3 +50.2 +97.2 +148.2		
(4) N _ R	in DMSO	N-1 N-2 N-4	(y)	
$\bigcup_{\substack{N > N \\ (1)}} Q$	$R = NH_2$ $R = Br$	+39.2 +137.2 +153.2 +28.8 +71.2 +74.4		
N N N N (1,2,4,5-tetrazine)	in acetone	-4.0	(a)	
(5) (4) (3)	0.05 м in DMSO	+ 67.2	(a)	
(7) (2) (2) (quinoline)	in CDCl ₃ in CDCl ₃ + CF ₃ COOH	+ 74.7 + 70.9 + 165.7	(z) (A) (A)	

Substituted quinolines, with sul	bstituent(s):		
2-COOH	in DMSO	+ 66.9	(o)
its complex with	in DMSO	+ 114.1	(0)
$H_2Rh(PPh_3)_2$			
$2\text{-OCH}=\text{CH}_2-4\text{-Me}$	neat + 20% CCl ₄	+ 133.2	(P)
$2-Me-4-OCH=CH_2$	neat + 20% CCl ₄	+88.3	(P)
5-OCH=CH ₂	neat + 20% CCl ₄	+ 76.1	(P)
8-OCH=CH ₂	neat + 20% CCl ₄	+ 68.0	(P)
$2-SCH=CH_2$	neat + 20% CCl ₄	+ 89.6	(P)
5-SCH=CH ₂	neat + 20% CCl	+65.3	(P)
8-SCH=CH ₂	neat + 20% CCl	+73.8	(P) Z
8-OH	in CDCl ₃	+ 95.7	(B) 75
its hydrochloride	in 1 M HCl	+ 200.3	NITROGEN NMR SPECTROSCOPY
•	in 0.1 m HCl	+ 192.6	(B) 🗒
its hydrobisulphate	in DMSO	+138.3	(B) \overline{Z}
8-OMe	in CDCl ₃	+84.0	(B) \$\vec{z}\$
	•	+82.5	(C) R
8-O ⁻ Na ⁺	0.1 м NaOH	+89.0	(B) SP
	in CD ₃ OD	+89.0	(B) Ö
	in CDCl ₃	+84.0	(B) TR
8-OSnBu ₃	neat liquid	+99.0	(C) 2
	in CDCl ₃	+99.8	(c) Š
	in pyridine	+ 100.1	(C) \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{
5-Me-8-OSnPh ₃	in CDCl ₃	+115.5	(D) <
	in CDCl ₃ (240 K)	+ 120.4	(C)
	CDCl ₃ (360 K)	+114.4	(C)
	in pyridine (240 K)	+ 124.3	(C)
	in pyridine (360 K)	+114.2	(C)
	in (Me ₂ N) ₃ PO (290 K)	+ 117.8	(C)
	in $(Me_2N)_3PO(370 K)$	+113.7	(C)
	(2/3 (2/	(+116.5	(D)
	solid state	\(\frac{118.2}{+118.2}\)	(D) 29
	Solia State	+ 118.9	(D) 299 (D)
		(110.5	(2)

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
8-S—SnBu ₃	in CDCl ₃	+ 82.1	(E)
$8-S-Sn(CH_2Ph)_3$	in CDCl ₃	+ 94.9	(E)
8-S—SnPh ₃	in CDCl ₃	+95.1	(E)
8-S-Sn(CH=CH2)3	in CDCl ₃	+ 94.5	(E)
O Me	in CD ₃ OD	+ 187.7	(B)
Complexes of 8-hydroxyquinoline anion ("Q"), R = Me, Et, Ph:	in CDCl ₃		(B)
SnR_2Q_2		+120 to +125	
SbPh ₃ ClQ		+114.8	
SnR ₃ Q		+101 to +119	
SbR ₃ ClQ		+97 to +99	
SbR_3Q_2		+ 84	
[]	in CDCl ₃		(E)
	R = Bu	+92.3	ν-/
N SnR ₂	$R = CH_2Ph$	+ 116.8	
	R = Ph	+ 110.8	
[³],	$R = CH = CH_2$	+ 101.4	

+241.7

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
3-SO ₂ Et		+ 244.1	
3-Cl		+ 231.0	
3- B r		+ 230.0	
4-Me		+ 236.4	
4-COMe		+ 233.0	
4-COOMe		+231.6	
4-Cl		+235.3	
4-Br		+232.6	
4-I		+ 228.0	
(6) (5) (4) (3)			
(7) N (2)	0.4 m in DMSO	+44.0 (N-1)	(a)
~ N.	0.4M III DIVISO	+ 40.9 (N-2)	(a) (a)
(8) (1)		T 70.7 (11-2)	(a)
(cinnoline)			
(6) (3) N (3) N (2) (8) (1)	0.5 м in DMSO	+ 10.3	(a) .
* * * * * * * * * * * * * * * * * * * *			
(phthalazine)			
1,4,5,6,7,8-F ₆ -phthalazine	e in acetone-d ₆	+ 106.9	(k)
(5) (4)			` '
(6) N (3)	0.5 m in DMSO	+97.8 (N-1)	(a)
(7) N (2)		+ 86.5 (N-2)	(a)
(8) (1)		1 30.3 (14-2)	(a)
(quinazoline)			

(5) (4) (6) N (3)			
$\binom{6}{(7)} \binom{N}{N} \binom{3}{(2)}$	0.5 m in DMSO	+ 50.1	(a)
(8) (1)	in benzene-d ₆	+ 51.4	(G)

(quinoxaline)

Substituted quinoxalines, w substituent(s):	ith		
6-Me	in benzene-d ₆	+ 52.1 (N-1)	(G)
5-Me	in the control of	+ 52.8 (N-4)	(G)
3-1 v1e	in benzene-d ₆	+ 49.6 (N-1)	(G)
1 COOH	in DMCO	+ 54.1 (N-4)	(G)
2-COOH	in DMSO	+ 47.4 (N-1)	(o)
	: DM00	+ 45.4 (N-4)	(o)
its complex with	in DMSO	+96.8 (<i>N</i> -1)	(o)
$H_2Rh(PPh_3)_2$	in acatoma d	+49.6(N-4)	(o)
2,3,5,6,7,8-F ₆	in acetone-d ₆	+ 107.4	(k)
(4) N	0.5 м in DMSO	+ 52.7 (N-1)	(H)
(6) N)		+ 51.7 (N-4)	(H)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		+ 57.7 (N-6)	(H)
(1)		1 37.77 (14-0)	(11)
(5) (4)			
$\langle N \rangle \langle N \rangle$	0.5 м in DMSO	+45.0 (N-1)	(a)
		+49.1 (N-4)	(a)
N		+62.2 (N-5)	(a)
(1)		, ,	(-)
(5) (4)	0.5 м in DMSO	+46.6 (N-1)	(H)
		+ 52.2 (N-4)	(H)
N. II		+92.1 (N-5)	(H)
(7) N N		+73.8 (N-7)	(H)
(1)		(1212 (17)	(11)

Table 19. —cont.

Compound	Solution or state	Nitroge nitrome	n shield	ing (ppm) referred	to neat	Notes
(4) N N (1)	0.5 м in DMSO	- 68.2 - 23.4 + 98.1	(N-2)				(a) (a) (a)
Ŗ	1 m in DMSO	N-1	N-2	N-3			(I)
N (3) N (2)	R = Me $R = Ph$			- 16.8 - 16.5			
NHR N (3) N (2) (1)	l m in DMSO (ca. 100% of NHR tautomer)						(I)
R		N-1	N-2	N-3	NH	R	
n-Bu CH ₂ CH ₂ OMe CH ₂ (α-pyridyl) CH ₂ (β-pyrydyl) p-tolyl		+ 10.6	-67.6 -69.9	$+67.0 \\ +66.3$	+ 292.0 + 295.9 + 293.3 ? + 278.7	 + 64.5 + 63.4	

(I)

(a)

(a)

1 м in DMSO

\mathbb{R}^1	X
Pr	I
Pr	I
Pr	I
Pr	Br
Pr	(p-tolyl)SO ₃
Me	MeSO ₃
Me	(p-tolyl)SO ₃
	Pr Pr Pr Pr Pr Me

N	I-1	N-2	N-3	NH
+++++++++++++++++++++++++++++++++++++++	- 40.5 - 39.6 - 36.6 - 36.8 - 36.4 - 35.8	+84.6 +84.4 +85.5 +85.1 +85.0 +88.6	+91.8 +91.6 +90.4 +90.2 +90.2	+ 269.3 + 272.6 + 261.4 + 259.4 + 261.1
	35.3	+88.6	+93.5 +93.4	+ 269.1 + 261.4

0.5 m in DMSO

+74.4

(acridine)

0.1 m in DMSO

+53.9

(phenazine)

0.5 m in DMSO

+43.6 (N-1,4) +49.6 (central N)

N-1,4) (H) central N) (H)

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Azaphenanthrenes	0.5 м in DMSO		
$(7) \underbrace{(5) (4)}_{(6)} (10) (1) (2)$			
N atom(s) at positions:			
1		+ 67.5	(a)
4		+ 76.8	(a)
9 1,8		+70.8	(a)
4,5		+ 67.1 + 69.3	(a) (a)
1,5		+68.2 (N-1)	(a)
-,-		+ 76.9 (N-5)	(a)
9,10		-59.9	(a)
4,5,9,10		+ 70.2 (N-4,5)	(J)
0.000		-70.3 (N-9,10)	(J)
3,6,9,10		+46.9 (N-3,6)	(J)
2,7,9,10 (3-Cl substituent)		- 84.4 (N-9,10) + 54.2 (N-2)	(J)
2,7,9,10 (3-C1 substituent)		+ 54.2 (N-2) + 53.2 (N-7)	(J) (J)
		-67.8 (N-9)	(J)
^ ^		-62.8 (N-10)	(J)
		, ,	` '
N N O N N N N N N N N N N N N N N N N N	0.5 м in DMSO	+ 79.7	(J)
N N			
	0.5 м in DMSO	+75.2	(J)

Table 19. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane		Notes
		+ 15.21 + 15.45 + 15.87 + 15.94 (N-	1)	(L)
	in CDCl ₃	=N-	NR	(M)
N_{R}	$R = H$ $R = SiMe_3$ $R = SiMe_2Cl$	+ 84.1 + 74.9 + 38.9	+ 321.6 + 317.1 + 308.6	
R HIN	in CDCl ₃ R = H R = OH	+ 240.0 + 230.9		(N)
(ca. 100% NH-tau	tomer)			
$ \begin{pmatrix} $	in MeNO ₂ , +55°C			(O)
R X Y				
Cl O O Cl S O Cl S S F S S		+ 144.1 + 134.2 + 126.5 + 133.1		

- (a) See ref. 5, pp. 486-511, and ref. 516, and references therein.
- (b) See refs 532 and 31, original data from R. Duthaler and J.D. Roberts, J. Am. Chem. Soc., 1979, 100, 4969, recalculated to neat nitromethane reference, corrected for bulk susceptibility effects.
- (c) Data from ref. 424, ¹⁵N-labelled pyridine moieties, 18.25 MHz ¹⁵N CPMAS and powder spectra, referenced originally to NO₃ in solid ammonium nitrate, +5.0 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects.
- (d) Data from ref. 34, high-precision ¹⁴N measurements, 36.14 MHz, Lorentzian lineshape fitting, referenced to neat nitromethane, *corrected* for bulk susceptibility effects, temperature $+35.0 \pm 0.3$ °C.
- (e) Data from ref. 1138, ¹⁵N-labelled pyridine, 9.12 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (f) Data from ref. 423, ¹⁵N-labelled pyridine, 30.4 MHz ¹⁵N CPMAS spectra, referenced originally to NO₃ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
- (g) Data from ref. 105, 25.357 MHz INEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; the values quoted were computed from the relevant titration curves.

- (h) Data from ref. 125, 40.56 MHz ¹⁵N INEPT and DEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects, +29°C.
- (i) Data from refs 1106 and 1107, 9.1 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac), added as a relaxation reagent.
- (j) Data from ref. 1139, details as in footnote (h) but the reference was neat nitromethane +20% C₆D₆, ca. +0.8 ppm from neat nitromethane, as can be reckoned from Table 26, conversion scheme IIb (Table 1).
- (k) Data from ref. 156, 20.3 MHz 15 N INEPT spectra (via $^{2}J_{NF}=2$ Hz), field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (l) Data from ref. 952, 18.075 MHz ¹⁴N spectrum, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (m) Data from ref. 779, 20.3 MHz ¹⁵N spectra, calibration as in footnote (k).
 - (n) Data from ref. 107, 40.5 MHz ¹⁵N INEPT spectra, calibration as in footnote (k).
 - (o) Data from ref. 140, 20.3 MHz ¹⁵N INEPT spectra, calibration as in footnote (k).
- (p) Data from ref. 1140, 5.75 MHz asnd 14.46 MHz ¹⁴N spectra, field perpendicular and parallel, respectively, to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (q) Original data from ref. 532, high-precision ¹⁴N measurements, details as in footnote (d).
- (r) Data from ref. 46, ¹⁵N doubly labelled molecules, 20.2 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃ in NH₄NO₃ in 2 M HNO₃, +4.6 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (s) Data from ref. 1141, ¹⁵N-labelled and unlabelled compound, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (t) Data from ref. 813, ¹⁵N-labelled compounds, 20.2 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃⁻, probably aqueous NaNO₁, +3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (u) Data from ref. 162, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane via a calibrated sample of MeNO₂ in methanol, uncorrected for bulk susceptibility effects; reported vs fictitious ammonia standard taken at + 380.2 ppm from neat nitromethane (the latter value actually corresponds to a perpendicular field-to-sample axis arrangement, Table 2).
- (v) Data from ref. 523, 27.25 MHz ¹⁵N solution spectra, field parallel to sample tube, referenced originally to NH₄ in 6 M NH₄NO₃ in 2 M HNO₃, +359.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); 30.42 MHz ¹⁵N CPMAS spectra, referenced to NH₄ in solid NH₄NO₃, +358.4 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects.
- (w) Data from refs 94 and 522, 27.4 MHz¹⁵N INEPT spectra, field parallel to sample tube, referenced originally to aqueous NH₄Cl, +352.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

- (x) Data from ref. 128 and ref. 1142, ¹⁵N-labelled compounds, 10.04 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane via a calibrated sample of aqueous KNO₃, uncorrected for bulk susceptibility effects.
- (y) Data from ref. 1143, 20.27 MHz¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; reported vs fictitious ammonia standard, see comments in footnote (u); Cr(acac), added as a relaxation reagent.
- (z) Data from ref. 772, 20.3 MHz ¹⁵N spectra, parallel to sample tube, referenced originally to 1 M HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (A) Data from ref. 1144, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄ in 5 M NH₄NO₃ in 2 M HNO₃, + 359.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (B) Data from refs 820 and 821, 18.25 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects other than those resulting from the addition of Cr(acac), as a relaxation reagent.
- (C) Data from refs 940 and 1145, ¹⁵N-labelled compounds, 10.095 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (D) Data from ref. 942, ¹⁵N-labelled compound, 20.218 MHz¹⁵N solution and CPMAS spectra, referenced to neat nitromethane (in the latter case via a calibrated sample of solid NH₄Cl), uncorrected for bulk susceptibility effects; the three signals observed in the CPMAS spectrum represent unequivalent crystal sites.
 - (E) Data from refs 144 and 1146, details as in footnote (C).
 - (F) Data from ref. 1038, 25.32 MHz ¹⁵N DEPT spectra, calibration as in footnote (u).
- (G) Data from ref. 1147, selectively ¹⁵N-labelled molecules, spectrometer not reported, neat nitromethane reference, uncorrected for bulk susceptibility effects.
- (H) Data from refs 27 and 665, 30.4 MHz and 50.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (I) Data from refs 1063, 1064 and 1148, 36.51 MHz 15N spectra, other details as in footnote (H); Cr(acac), added as a relaxation reagent.
 - (J) Data from ref. 21, 50.7 and 40.5 MHz¹⁵N spectra, other details as in footnote (H).
 - (K) Data from ref. 1149, 40.5 MHz ¹⁵N spectra, other details as in footnote (H); assignments are tentative.
 - (L) Data from ref. 1150, details as in footnote (H).
- (M) Data from ref. 1151, 27.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (N) Data from ref. 1036, 40.55 MHz 15N spectra, calibration as in footnote (u).
 - (O) Data from ref. 913, 28.914 MHz ¹⁴N spectra, referenced to internal nitromethane used as a solvent; 10-20% solutions (mol %).
- (P) Data from ref. 681, 30.41 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects, Cr(acac)₃ added as a relaxation reagent; originally reported vs fictitious ammonia standard taken at +380.2 ppm from neat nitromethane.

Table 20. Nitrogen shieldings in azine analogues containing the SO₂ moiety

Compound	Solution or state				Nitrogen (ppm) re neat nitr	Notes	
R ⁵	in DI	in DMSO R		R ⁵	N-2	N-6	(a)
$O_{2} \stackrel{\stackrel{\scriptstyle N}{\stackrel{\scriptstyle \bullet}{}{}}}{\underset{\stackrel{\scriptstyle \bullet}{}{}{}}{\underset{\stackrel{\scriptstyle \bullet}{}{}{}}{\underset{\stackrel{\scriptstyle \bullet}{}{}}{\underset{\stackrel{\scriptstyle \bullet}{}{}{\underset{\stackrel{\scriptstyle \bullet}{}{}}{\underset{\stackrel{\scriptstyle \bullet}{}{}}{\underset{\stackrel{\scriptstyle \bullet}{}{}}{\underset{\stackrel{\scriptstyle \bullet}{}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}}{\underset{\stackrel{\scriptstyle \bullet}{\stackrel{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \bullet}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \scriptstyle \bullet}{\underset{\scriptstyle \bullet}}}{\underset{\scriptstyle \scriptstyle \bullet}{\underset{\scriptstyle \bullet}}}{\scriptstyle \scriptstyle	H Me CH ₂ 1 Bu Bu H	Me CH₂Ph Bu Bu		Me Me Ph OH OMe OH	+ 184.9 + 240.9 + 241.6 + 234.3 + 244.9 + 242.7	(averaged) + 143.3 + 130.6 + 176.9 + 179.8 + 176.5	
NH ₂ (6) N (C) NMe NH ₂ (NMe NH ₂ (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	in D	MSO			+ 261.9 + 214.7 + 290.6,		(a) (a) (₂) (a)
\mathbb{R}^5 \mathbb{R}^4	in DN	ASO					(a)
(6) N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ⁶	N-2	N-6	
(2) R ²	H H H Me Me Me	H Me Me Me Me Me	H H Br	H Ph Bu Ph Ph Me	+ 242.7 + 241.6 + 242.6 + 257.1 + 258.6 + 259.4	+ 176.5 + 209.6 + 220.7 + 209.5 + 209.2 + 232.6	
Bu N H H O2S N Me	in Di	MSO			+ 72.3 + 215.1		(a) (a)
NH ₂	in I	OMSO)		N-2,6	NH ₂	(a)
O_2 S N NH_2	R = R =	= H = CH ₂	CH=C	CH ₂	+ 164.9 + 161.0	+ 277.6 + 283.2	
NH ₂	in I	OMSO	•		N-2,6	NH ₂	(a)
02S NH2					+ 149.6	+ 285.2	
$\begin{array}{c} Ph \\ N \\ O_2 S \\ N \\ O_2 \end{array}$	in I	OMSO			+ 204.4 (N	N-2)	(a)

Table 20. —cont.

Compound		Solution or state					Nitrogen shielding (ppm) referred to neat nitromethane				
$N \sim N \stackrel{R}{\sim} R$		in DMSO $R = H$ $R = Me$				N-2,6			N-4	(a)	
O ₂ S _N (2)									+ 231.7 + 238.7		
(6) NH ₂ N(1)	x	R	in DN N-1		N-3	N-4		N-6	NH ₂	(a)	
O_2 S N N N N N N N N N N	0 0 S	H Me Me		35.7 37.9 26	+ 6.6 + 7.6 + 98.8	+2	70.3 76.4 58.4	+ 173.9 + 181.8 + 188.8	+270.1		
NH ₂ NOR O ₂ S N				sec	e Table :	24					
NH ₂ (5) N	6	in D R ⁶	MSC R ⁷) N-1	N-3		N-5	N-8	NH ₂	(b)	
O_2 S N N N R	7	H H Me	Me Ph Me	+ 251 + 248 + 260	.0 + 17	1.1	+ 59.8 + 54.8 + 58.5	+84.	1 + 281.9		

⁽a) Data from refs 1152 and 1153, 30.41 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane via a calibrated sample of 4 m NH₄NO₃ in 2 m HNO₃, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.

(b) Data from ref. 1061, details as in footnote (a).

Table 21. Nitrogen shieldings in flavin and related pterin ring systems

Compound	Solution or state	Nitroge referred	Notes						
Oxidized forms of flavins									
R ⁸ (10) N N N O N N N N N N N N N N N N N N N		<u>N-1</u>	N-3	N-5	N-10	-			
R = ribityl-5'-monoph $R^7 = R^8 = H$ ("FM	osphate, N'')								
($0.004 \mathrm{m} \mathrm{in} \mathrm{D}_2\mathrm{O},$	+ 191.	1 + 221.4	+ 47.2	?	(a)			
	pD = 7.5 $0.12 \text{ m in } D_2O$, pD = 7.5	+ 189.0	0 + 220.8	3 + 47.5	+ 219.4	↓ (a)			
FMN in old yellow enzyme Bacterial luciferase	pH = 8.5	+ 187.6	5 + 217.8	3 + 62.5	?	(a)			
from Vibrio harveyi	pH = 7.0	+ 194.8	8 + 219.6	5 + 56.1	+ 221.1	(c)			
FMN from Azotobacter vinelandi	ipH = 8.0	+ 195.3	5 + 221.7	7 + 40.5	?	(b)			
Megasphaera elsdenii Clostridium MP	pH = 8.0 pH = 8.0	-	9 + 221.0 4 + 220.8		? ?	(b) (b)			
R = ribityl-5'-monoph R ⁷ = Me, R ⁸ = H ("MeIMN")	•	•	4 + 221.		+ 217.3	` '			
	$0.006 \mathrm{M} \mathrm{in} \mathrm{D_2O}, \\ \mathrm{pD} = 7.5$	+ 190.	8 + 221.	5 + 46.3	+ 217.6	5(a)			
MeIMN in old yellow enzyme	pH = 8.5	+ 187.	1 + 217.	7 + 61.1	+ 220.4	1(a)			
R = tetraacetylribityl, R ⁷ = R ⁸ = H ("TARF")	0.35 m in CDCl ₃ same +10% MeOH		0 + 222 1 + 222						
R = tetraacetylribityl, $R^7 = Me, R^8 = H$ ("MeTARI")	in CDCl ₃	+ 180.3	8 + 222.2	2 + 35.2	+ 231.5	5(a)			
R = tetraacetylribityl, $R^7 = R^8 = Me$ ("Me ₂ TARI")	0.007 м in CDCl ₃	+ 182.	0 + 222.	1 + 37.6	+ 231.	7(a)			
Desulphovibrio vulgaris apoflavodoxin (oxidized)	in H ₂ O	+ 193.	9 + 222.0	0 + 40.8	?	(a)			

Table 21. —cont.

Compound	Solution or state		en shield d to nea			Notes
Riboflavin bound to rib	ooflavin-binding prote in D ₂ O/H ₂ O	ein				
	pH = 9.0		4 + 222.7		+216.	5
	pH = 6.4		4 + 223.4		+216.8	
from egg yolk	pH = 6.2	+ 190.3	3 + 222.5	5 + 43.7	+216.0	6
Anabaena 7120 flavodoxin	pH = 7.5	+ 193.4	4 + 218.9	+ 46.4	+ 217.5	9(d)
Flavodoxin prosthetic g	roup in 6-OH-L-nico	tine				
oxidase (oxidized form)	in H ₂ O		7 + 221.3	+46.6	+ 219.	7 (e)
	(+D-inhibitor)		1 + 221.8			
Reduced forms of flavins	.					
R ⁸ (10) R (1) N O NH (3)		<u>N-1</u>	N-3	N-5	N-10	-
R = ribityl-5'-monopho $R^7 = R^8 = H$	osphate,					
("FMNH-")	in D_2O , $pD = 7.8$,	+ 199.3	3 + 232.6	+324.2	? ?	(a)
FMNH ⁻ in						
old yellow enzyme	pH = 8.0	+ 194.5	5 + 228.7	+333.4	?	(a)
bacterial luciferase from Vibrio harveyi FMNH from	pH = 6.5-8.5	+ 205.1	1 + 231.9	+ 322.0) + 287.3	3 (c)
Azotobacter vinelandi	ipH = 8.0	+ 199.	9 + 231.9	9 + 320.2	2 ?	(b)
Megasphaera elsdenii	pH = 8.0		5 + 232.2			(b)
Clostridium MP	pH = 8.0	+ 199.	1 + 231.8	3 + 320.0) ?	(b)
R = ribityl-5'-monoph $R^7 = Me, R^8 = H$	•					
("MeIMNH-") MeIMNH- in	in D_2O , $pD = 8.5$,	+ 195.	0 + 231.2	2 + 321.3	3 + 284.	7(a)
old yellow enzyme protonated (1-NH)	pH = 8.0	+ 195.	2 + 229.4	+ 324.8	3 + 284.	3 (a)
form, "MeIMNH ₂ "	pH = 5.4	+ 253.	8 + 231.2	2 + 321.3	3 + 294.	6(a)
R = tetraacetylribityl, $R^7 = R^8 = \text{Me, prot}$ ("Me ₂ TARIH ₂ ")	tonated (1-NH) form		0 + 231.2	2 + 321.3	3 + 284.	7(a)
Desulphovibrio vulgaris apoflavodoxin	in H ₂ O,					
(reduced)	pH = 6-8.5	+ 195.	3 + 233.6	5 + 320.7	7 ?	(a)

Table 21. --cont.

Table 21. —com.						
Compound	Solution or state		n shield to neat			Notes
Anabaena 7120 flavodoxin	pH = 7.0	+ 198.9	+ 229.9	+ 326.4	+ 285.	8(d)
Flavodoxin prosthetic g (substrate-reduced) (dithionite-reduced)	group in 6-OH-L-nico in H ₂ O in H ₂ O	+ 189.4	lase + + 234.2 : + 232.7			
Pterin systems						
Me (8) N (1) N (3) NH (3)		N-1	N-3	N -5	N-8	(f)
R = ribityl,	in H ₂ O	+ 198.2	+ 220.0	+48.1	+ 183.	9
(6,7-Me ₂ -8-ribityl- lumazine) lumazine protein	in DMSO	+ 191.0	+ 216.5	+ 34.9	+ 187.	3
in Photobacterium phosphoreum (8) (1)	pH = 7	+ 193.2	+ 218.3	+ 55.4	+ 182.	3
(8) (1) Me N NH ₂		N-1	N-3	N-5	2-NH ₂	(g)
Me N NH (3)	$pH = 12.8, +4^{\circ}C$	+ 201.5	5 + 171.5	+ 66.9	+ 304.	7
("DMP")						
Me NH NH NH (3)	in H ₂ O pH = 8.1, +5°C pH = 7.4, +5°C pH = 1, +30°C	?	3 + 241.8 + 241.6 5 + 243.2	+335.2	2 + 311.	
("DMPH ₄ ")						
Me NH N NH ₂ H N (3) (8) (1) NH N NH N (3)	in H ₂ O pH = 8.6, +4°C pH = 2.5-4.5		2 + 186.1 9 + 240.2		? + 276.	(g) 7
("Q-DMPH ₂ ")						
Me N N NH2 Me N N N (3) ("7,8-DMPH ₂ ")	in H ₂ O pH = 13, +4°C	+ 208.4	+ 188.1	+ 106.4	l + 310.	(g) 2

Table 21.—cont.

- (a) Data from refs. 158, 524, 525, 527, 528, 1154 and 1155, ¹⁵N-labelled and unlabelled compounds 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, *corrected* for bulk susceptibility effects.
 - (b) Data from ref. 764, details as in footnote (a).
 - (c) Data from ref. 1156, details as in footnote (a).
- (d) Data from ref. 103, 15 N-labelled samples, 50.68 MHz 15 N spectra, field parallel to sample tube, referenced originally to (NH₄)₂SO₄ in 1 M HNO₃, ca. + 359.1 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); originally reported vs fictitious ammonia standard taken at + 380.2 ppm from neat nitromethane (the latter value refers actually to a perpendicular field-to-sample axis arrangement), but we retrieved the original data and carried out the recalculation as indicated above; also 2-D 1 H{ 15 N} COSY spectra.
- (e) Data from ref. 1157, ¹⁵N-enriched samples, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported originally vs NH₃, +381.9 ppm from nitromethane (Table 1); 0.001–0.002 M concentrations in phosphate buffer.
 - (f) Data from ref. 1158, details as in footnote (a).
- (g) Data from ref. 526, ¹⁵N-labelled (N-1,3,5, and NH₂) compounds, 36.5 and 20.3 MHz ¹⁵N spectra, field parallel to sample tube; also 9.11 MHz ¹⁵N spectra, field perpendicular to sample tube; referenced originally to NH₄ in NH₄NO₃ in 2 M HNO₃, +359.1 ppm from neat nitromethane (Table 2), as can be reckoned from the reported difference in the shieldings for the two signals in the standard, 353.2 ppm; conversion schemes IIb and IIa, respectively (Table 1).

Table 22. Nitrogen shieldings in nucleosides, nucleotides and related structures

Compound and state		Nitrogen shielding (ppm) referred to neat nitromethane					
(1) N N N N N (adenosine)	<u>N-1</u>	N-3	N-7	N-9	6-NH ₂		
adenosine							
in DMSO	+ 144 3	+157.0	+140.1	+209.3	+297.1	(a)	
m DMSO					+299.2		
					+299.3		
in DMSO + 1 eq. CF ₃ COOH							
· · · · · · · · · · · · · · · · · · ·	+ 203.9	+ 137.1	T 136.0	T 203.2	T 472.2	(C)	
8-Br-adenosine	. 141.0	. 167.7	0	0	1 204 2	(a)	
in DMSO		+ 157.7	?	?	+294.2	(a)	
2',3'-O-isopropylidene-adenosine							
in DMSO		+ 155.5	+137.0	+ 207.9	+296.3	(a)	
8-Br-2',3'-O-isopropylidene-aden							
in DMSO	+141.2	+156.3	?	?	+295.0	(a)	
8-Br-6- <i>N</i> -Me-							
2',3'-O-isopropylidene-adenosine							
in DMSO	+145.5	+158.1	?	?	+300.1	(a)	
5'-O-[CPh(p-anisyl) ₂]adenosine							
in DMSO	+143.2	+154.5	+136.6	+207.7	+296.5	(a)	
5'-O-acetyladenosine						` '	
in DMSO	+144.4	+ 157.5	+139.1	+215.6	+299.3	(c)	
$in DMSO + 1 eq. CF_3COOH$							
in CH ₂ Cl ₂					+ 307.1		
in $CH_2Cl_2 + 1$ eq. CF_2COOH							
$6-N-5'-O-di[CPh(p-anisyl)_2]adender$		1 130.0	1 171.2	1 207.3	(2)4.0	(0)	
in DMSO		⊥ 152 5	± 141 7	± 207 1	+ 296.7	(2)	
5'-O-(CO-p-tolyl)adenosine	7 133.0	T 132.3	T 171.;	7 207.1	T 270.1	(4)	
	1.142.2	1 164 0	1 127 0	1 200 0	2067	(0)	
in DMSO		+ 134.0	+ 137.0	+ 209.0	+ 296.7	(a)	
6-N-5'-O-di(CO-p-tolyl)adenosing		. 1242	. 122.2	. 200 0	9	(-)	
in DMSO		+ 134.3	+133.3	+ 209.0	?	(a)	
6,6-N-5'-O-tri(CO-p-tolyl)adenos		. 100.0	. 127 (. 207 (0	<i>(</i>)	
in DMSO	+ 109.6	+128.3	+137.6	+ 207.6	?	(a)	
6-N-benzoyladenosine							
in DMSO					+247.6		
in DMSO + 1 eq. CF_3COOH	+128.8	+137.3	+153.2	+208.9	+248.0	(c)	
6-N-benzoyl-5'-O-acetyl-adenosis	ne						
in DMSO					+249.3		
in DMSO + 1 eq. CF_3COOH							
in CH ₂ Cl ₂					+252.3		
in $CH_2Cl_2 + 1$ eq. CF_3COOH	1 + 164.9	+139.4	+153.8	+210.8	+250.9	(c)	
6-N-acetyl-5'-O-acetyl-adenosine							
in DMSO		+138.9	+136.9	+215.1	+ 242 9	(c)	
			-			. ,	

Table 22. —cont.

Compound and state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
in DMSO + 1 eq. CF ₃ COOH	+140.6 +139.4 +140.6 +213.4 +242.9	(c)
in CH ₂ Cl ₂	+133.2 +141.8 +143.7 +215.4 +244.1	(c)
in $CH_2Cl_2 + 1$ eq. CF_3COOH	+166.1 +140.8 +148.3 +211.2 +244.4	
adenosine-1-N-oxide		
in DMSO	+143.7 + 159.4 + 139.9 + 206.6 + 302.0	(a)
2',3'-O-isopropylidene-adenosine-		• •
in DMSO	+142.1 + 158.8 + 140.1 + 205.8 ?	(a)
2'-deoxy-adenosine		` '
in DMSO	+145.0 +157.7 +140.3 +207.5 +299.0	(b)
	+145.7 + 158.5 + 140.7 + 208.3 + 299.5	
in DMSO + 1 ea. CF, COOH	+209.1 + 157.3 + 138.5 + 201.1 + 292.1	
in H_2O , $pH = 6.5$	+148.5 ? ? +298.3	
3'-O-benzoyl-2'-deoxyadenosine	, , , , , , , , , , , , , , , , , , , ,	(-)
in DMSO	+145.2 +156.5 +140.0 +208.5 +299.5	(d)
	+205.7 +156.4 +138.1 +202.1 +292.3	(d)
6,6-N,N-dimethyl-2'-deoxyadenos		(-)
in DMSO	+146.0 + 160.8 + 136.8 + 208.7 + 303.6	(d)
	+175.5 +164.0 +135.9 +205.4 +297.1	
6-N-(S-O-nitrophenyl)-2'-deoxyac		(-)
in DMSO	+141.0 + 148.3 + 141.0 + 206.9 + 310.4	(4)
	+147.9 +148.8 +143.2 +205.9 +309.4	
6-N-benzoyl-2'-deoxyadenosine	11113 11010 11312 20013 00311	(-)
in DMSO	+121.7 +136.8 +137.8 +207.6 +249.7	(d)
	+129.2 +137.2 +156.7 +204.8 ?	(d)
6-N-benzoyl-3'-O-acetyl-2'-deoxy	adenosine	(4)
in DMSO	+121.2 + 137.3 + 135.8 + 210.0 + 248.9	(d)
	+124.5 +137.5 +143.9 +209.0 +248.6	(d)
6-N-benzoyl-3'-O-benzoyl-2'-deox	(vadenosine	(4)
in DMSO	+121.1 + 137.3 + 135.9 + 210.2 + 249.5	(d)
	+125.8 +137.6 +146.0 +208.7 +248.2	
6-N-benzoyl-5'-O-benzoyl-2'-deox		(4)
in DMSO	+121.0 + 135.7 + 136.2 + 208.5 + 249.6	(d)
	+125.7 +136.1 +144.4 +207.3 +248.5	
6-N-benzoyl-5'-O-(COOCH ₂ -fluo		(u)
in DMSO	+121.1 + 136.0 + 135.9 + 208.6 + 237.8	(d)
	+126.9 +136.5 +145.9 +207.2 ?	(d)
6-N-(m-chlorobenzoyl)-2'-deoxya		(u)
in DMSO	+122.9 + 136.4 + 136.9 + 207.4 + 247.3	(d)
	+122.9 +136.4 +136.9 +207.4 +247.3 +124.9 +136.4 +145.7 +206.2 ?	(d)
6,6-N,N-di-benzoyl-2'-deoxyaden		(u)
		(4)
in DMSO + Lag CE COOH	+112.2 +130.6 +141.2 +205.7 +208.3 +112.2 +130.6 +141.5 +205.7 +208.3	(u)
6 N (COOCH from vi) 2 dece	+112.2 +130.0 +141.3 +203.7 +206.3	(u)
6-N-(COOCH ₂ -fluorenyl)-2'-deox		(4)
in DMSO	+127.7 +139.5 +139.5 +207.1 +269.8	(a)
in DMSO + 1 eq. Cr3COOH	+136.6 + 139.9 + 146.4 + 205.4 + 262.5	(a)

Table 22. —cont.

Compound and state	Nitroger nitrome		ng (ppm)	referred	to neat	Notes
6-N-(COOCMe ₂ CCl ₃)-2'-de in DMSO in DMSO + 1 eq. CF ₃ C 3',5'-phosphoramidatoaden (C-3')-O P(R)=O	+ 124.8 $+ 133.1$	+139.1	+ 140.9 + 147.3			
$(C-5')$ $-O$ $^{\Gamma(K)}$ $-O$			PNR	\mathcal{R}_2		
$R = NH_2$	(R-P isomer)		+ 34			(e)
D MIM.	(S-P isomer)		+ 34 + 35			(e) (e)
R = NHMe	(R-P isomer) (S-P isomer)		+ 35			(e)
$R = NMe_2$	(R-P isomer) (S-P isomer)		+ 35 + 35			(e) (e)
$R^{1} + N^{H_{2}} C^{(7)} C^{-X} I^{-1}$ $(R = 2', 3'-O\text{-isopropylider}$ $in DMSO$	• •					(a)
	N-1	N-3	N-7	N-9	6-NH ₂	
$R^1 = Me, X = H$ $R^1 = Me, X = Br$ $R^1 = OMe, X = H$	+ 223.9	+153.7	+ 136.0 ? + 133.8	?	? ? ?	
$ \begin{array}{c c} (1) & & (7) \\ HN & & N \\ H_2N & & N \\ (2) & (3) & \text{ribityl} \end{array} $ (guanosi	ne) N-1	N-3	N-7	N-9	2-NH ₂	
guanosine						
in DMSO			+ 132.7			
			+132.8			
			+131.9 +133.8			
in DMSO + cytidine			+134.7	?	+307.0	
in H_2O	+231.5		?	?	+306.1	` '
2',3',4',5'-tetra-O-acetylgua						
in DMSO		+216.1	+ 131.5	+215.7	+ 307.0	(k)
guanosine-5'-monophospha in D_2O , $pD = 7.5$		± 21 <i>4 4</i>	+ 144.0	⊥ 210 5	⊥ 306 €	(I)
$in \ D_2O, pD = 7.3$ $in \ D_2O, pD = 12$			+ 144.0 + 144.9			` '
= 20, p=	, ., ., .,			. 207.7	, 20.12	(*)

Table 22. —cont.

Compound and state	Nitroge nitrome	n shieldi thane	ng (ppm)) referred	to neat	Notes
in D_2O , $pD = 8.0$				+210.7	+ 304.9	(m)
same + MeHgOH	+186	+208	+139	+207	+299	(m)
GMP adduct with (diethylenetria	mine)nit	ratopalla	dium(II)	nitrate		
in D_2O	?	?	+ 206	+229	+302	(1)
cis-Pt(NH ₃) ₂ (guo) ₂ Cl ₂						
0.25 m in DMSO	+231.8	+217.3	+235.5	+206.7	+303.4	(n)
				+423.6	(NH_3)	(n)
8-OMe-guanosine						
in DMSO	+229.2	+211.6	+186.0	+234.9	+306.0	(h)
8-OH-guanosine						
in DMSO	+232.8	+211.6	+270.3	+237.7	+305.5	(h)
8-OCH ₂ Ph-guanosine						
in DMSO	+231.5	+211.4	+185.2	+234.3	+306.3	(h)
8-SMe-guanosine						
in DMSO	+231.5	+211.9	+137.7	+214.8	+305.3	(h)
8-SH-guanosine						
in DMSO	+232.1	+212.5	+229.9	+210.2	+303.8	(h)
8-Br-guanosine						
in DMSO	+230.6	+212.7	+126.4	+212.3	+304.1	(h)
8-SO ₂ Me-guanosine						, ,
in DMSO	+230.9	+213.0	+116.7	+215.0	+301.2	(h)
2'-deoxy-guanosine						` '
in DMSO	+231.8	+213.1	+132.7	+205.4	+305.7	(h)
2'-deoxy-guanosine-5'-monophost						` '
0.5 м in DMSO	+233.5	+214.8	+133.6	+208.1	+306.4	(t)
as above $+ CF_3COOH$	+233.0	+216.0	+168.1	+205.4	+304.4	(t)
8-OH-2'-deoxyguanosine						. ,
in DMSO	+229.2	+211.5	+271.0	+235.8	+304.4	(h)
1-N-Me-guanosine						` '
pure, in DMSO	+237.8	+216.5	+133.2	+213.0	+301.3	(i)
in $DMSO + 1$ eq. CF_3COOH	+236.3	+219.1	+193.4	+208.0	+296.6	ά
commercial, in DMSO					+302.4	
cis-Pt(NH ₃) ₂ (1-Me-guo) ₂ Cl ₂			·	•	•	(0)
0.25 M in DMSO	+237.0	+218.1	+236.6	+208.9	+297.6	(n)
n°	,	,	,		(NH_3)	
(1)					()	()
N NMe						
$\underset{(2)}{\overset{\text{H}_2N}{\bigvee}} \underset{(3)}{\overset{\text{N}}{\bigvee}} \underset{\text{libityl}}{\overset{\text{N}_{(9)}}{\bigvee}} (7-N-\text{Me-guano})$	sine)					
	N-1	N-3	N-7	N-9	2-NH ₂	
-						
. 51490	+173.3	+213.0	+222.1	+211.2	+301.3	(i)
pure, in DMSO						
•	+173.1	+212.8	+222.9	+211.0	+301.1	
pure, in DMSO in DMSO + 1 eq. CF_3COOH	$+173.1 \\ +233.0$	+ 212.8 + 219.2	+ 222.9 + 221.8	+ 211.0 + 208.2	+301.1	(i)

Table 22. —cont.

Compound and state	Nitroge nitrome			ng (ppm)	referred	to neat	Notes
commercial, in DMSO (ca. 60% protonated)					+ 208.8 + 209.7	? + 299.8	(g) (i)
O (7) (inosine) HN N (9) ribityl							
inosine		N-1		N-3	N-7	N-9	
0.25 м in DMSO		+17	73.3	+ 213.0	+ 222.1	+211.2	(n)
$ \begin{array}{c c} O & (7) \\ HN & N \\ O & NH & (9) \\ (3) & nbityl \end{array} $ (xanthosine)							
xanthosine		N-1		N-3	N-7	N-9	
0.25 m in DMSO 0.25 m in DMSO + 0.5 eq. CF ₃ cis-Pt(NH ₃) ₂ (xan) ₂ Cl ₂	,СООН					+ 216.2 + 215.8	
in DMSO		+ 22	28.4	+ 268.4	+ 225.8 + 424.6	? (NH.)	(n) (n)
O (uridine)		-			1 727.0		()
uridine			N-1		N-3		
in DMSO			+ 23	36	+ 222		(o)
3-N-(p-NO ₂ -phenyl-SO ₂ -CH ₂ CH ₂ 0.35 m in DMSO	₂)-uridin		+ 23	37.2	+ 222	.0	(p)
3-N-(p-NO ₂ -phenyl-SO ₂ -CH ₂ CH ₂	2)-2',3',5						
0.55 M in DMSO			+24		+ 221		(p)
$0.55 \mathrm{M}$ in CH_2Cl_2 3- N -(p - NO_2 -phenyl- CH_2CH_2)-2',	3′ 5′. tei /		+ 24		+ 222	.3	(p)
$0.25 \mathrm{M}$ in DMSO	١-١١١- د, د		+24		+216	9	(p)
$0.25 \mathrm{M}$ in CH_2Cl_2			+24		+217		(p)
2',3'-O-isopropylidene-5'-O-acetyl	luridine						\1 /
in CDCl ₃			?		+ 220		(q)
in CDCl ₃ , paired with adenosine	2		?		+ 214	.5	(q)
uridine 2'-monophosphate 0.01 M in H_2O , $pH = 5.5$			+ 23	15.0	+ 221	1	(s)
as above, complexed with RNAc	ase A		+23		+ 221		(s)
					=0		(-)

Table 22. —cont.

	Nitrogen shielding (ppm) referred to neat nitromethane					
uridine 3'-monophosphate 0.01 M in H_2O , $pH = 5.5$ as above, complexed with RNAase	+ 234.1 A + 232.3		(s) (s)			
(pseudo-uridine)	N-1	N-3				
2',3',5'-tri-O-acetylpseudouridine in CDCl ₃	+ 242.7	+ 219.4	(q)			
(thymidine)	N-1	N-3				
thymidine in DMSO 2',3',5'-tri-O-benzoylthymidine in CDCl ₃ in CDCl ₃ , paired with adenosine	+ 236	+ 224 + 224.2 + 217.0	(o) (q) (q)			
(cytidine)	N-1	N-3 4-NH ₂				
cytidine 0.5 m in DMSO 0.5 m in DMSO + 0.5 m guanosine 0.4 m in DMSO 0.5 m in DMSO + 0.4 m 7-Me-gua 0.8 m in DMSO 0.8 m in DMSO + 1 eq. CF ₃ COO cytidine-2'-monophosphate 0.01 m in H ₂ O, pH = 5.5 as above, complexed with RNAase 0.01 m in H ₂ O, pH = 8.4	+ 229.3 nosine + 229.6 + 228.4 + 228.4 + 229.2	+172.3 +289.0 +176.2 +286.9 +171.9 +288.9 +175.7 +287.9 +172.1 +287.7 +236.9 +266.9 +183.3 +284.5 +177.5 +284.5 +179.3 +287.4	(i) (i) (i) (i) (r) (r) (s) (s) (s)			

Table 22. —cont.

	rogen shielding (ppm) referre	ed to neat Note
cytidine-3'-monophosphate		
$0.8 \mathrm{M} in H_2O, pH = 6.0$	+227.1 + 187.0	+282.6 (m)
as above $+ 0.2$ eq. MeHgOH	+225.6 + 198.6	+281.4 (m)
2',3',5'-tri-O-acetylcytidine		
0.45 m in DMSO	+ 232.3 + 171.2	+285.2 (c)
$0.45 \mathrm{M}$ in DMSO + 1 eq. CF_3COC		+272.5 (c)
$0.45\mathrm{M}$ in CH_2Cl_2	+233.6 + 177.2	+284.9 (c)
$0.45 \mathrm{M}$ in $CH_2Cl_2 + 1 \mathrm{eq}$. CF_3COC	0H + 232.6 + 236.9	+275.3 (c)
4-N-acetyl-2',3',5'-tri-O-acetylcytidine		
0.8 m in DMSO	+218.5 + 146.3	+232.2 (c)
$0.8 \mathrm{M}$ in DMSO + 1 eq. CF_3COO_4	H + 218.4 + 148.9	+232.4 (c)
0.95 м in DMSO	+219.2 + 152.4	+234.0 (c)
$0.95\mathrm{M}$ in DMSO + 1 eq. CF_3COC	+216.0 + 206.8	+235.8 (c)
4-N-benzoylcytidine		
0.8 m in DMSO	+213.1 + 154.1	+238.8 (c)
$0.8 \mathrm{M}$ in DMSO + 1 eq. CF_3COOD		+238.5 (c)
4-N-benzoyl-2',3',5'-tri-O-acetylcytidi		
0.8 m in DMSC	+218.5 + 135.6	+239.1 (c)
$0.8 \mathrm{M}$ in DMSO + 1 eq. CF_3COO_3		+236.5 (c)
$0.8\mathrm{M}$ in CH_2Cl_2	+219.3 +139.3	+239.5 (c)
$0.8 \mathrm{M}$ in $CH_2Cl_2 + 1 \mathrm{eq.}$ CF_3COO	H + 217.8 + 187.0	+240.6 (c)
2'-deoxycytidine-3'-monophosphate		
0.5 M in DMSO	+226.4 + 174.7	+286.1 (t)
$0.8 \mathrm{M}$ in DMSO + $2.6 \mathrm{eq.}$ CF ₃ CO	OH + 225.2 + 236.9	+274.3 (t)
(6)		
NH ₂ (7) (7 decreased experience		
(1) (7-deazaadenosine	tubercidin)	
î. 1 >>		
N N (9)		
(3) ribityl	N-1 N-3 N-9	$6-NH_2$
tubaraidin		
tubercidin in DMSO	+ 148.1 + 155.4 + 224	4 + 2067 (v)
IN DIASO	+ 150.4 + 157.8 + 226	
5'-O-CPh ₃ -tubercidin	+130.4 +137.8 +220	.9 + 290.2 (0)
in DMSO	+ 148.2 + 154.1 + 224	1 + 296 1 (a)
	+ 140.2 + 154.1 + 224	.1 + 270.1 (a)
6-N-CPh ₃ -5'-O-CPh ₃ -tubercidin in DMSO	+138.8 + 152.5 + 224	9 + 271.6 (a)
2'-deoxy-tubercidin	+ 150.0 152.5 22 i	.5 271.0 (a)
in DMSO	+150.2 + 157.7 + 223	1.7 + 298.3 (b)
(II, DMSO	130.2 131.7 225	., 2,0,0 (0)
(1) 📗(7)		
HN		
人)	
H_2N N N N N N	N-1 N-3 N-9	$2-NH_2$
(2) (3) ribityl		
2'-deoxy-7-deazaguanosine		
in DMSO	+218.9 + 212.5 + 222	o + 309.6 (b)

Table 22. —cont.

Compound and state		gen shield methane	ding (ppm	n) referred	to neat	Note
(5) (4) I 1 1 1 1 1 1 1 1 1	yyosine)					
Me ribityl	N-1	N-3	N-4	N-5	N-8	
vyosine in DMSO Me wyyosine	+ 131.9 + 132.0	+213.2 +213.7	+ 287.4 + 287.8	+ 157.1 + 157.2	+ 191.2 + 191.5	
-Me-wyosine in CH ₂ Cl ₂ yyosine 2',3',5'-triacetate	+130.0	+ 221.2	+291.8	+162.3	+ 194.1	(v)
in CH ₂ Cl ₂		+213.2	+ 287.4	+157.1	+191.2	(v)
-Me-wyosine 2',3',5'-triac in CH ₂ Cl ₂		+214.4	+ 289.7	+161.3	+ 193.4	(v)
$e \xrightarrow{(8)} N \xrightarrow{N} N \xrightarrow{N (3)} N \xrightarrow{(15)} N \xrightarrow{(4)} N \xrightarrow{ribityl}$	+134.8	+213.2	+ 221.7	+ 243.1	+ 194.8	(g)
$e \xrightarrow{(8)} N \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{(4)} N \xrightarrow{N} N \xrightarrow{N} N \xrightarrow{(3)} N \xrightarrow{\text{ribityl}}$	+ 226.1	+ 215.1	+ 214.2	+ 159.3	+ 187.1	(g)
$ \begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	erivatives, sed			N-9	R	
O a actual demissations						•
-O-acetyl-derivatives R = OMe in DMSO	+	140.4 + 14	42.6 + 13 <u>9</u>	9.5 + 214.	3 -	(c)
in DMSO + 1 eq. CF in CH_2Cl_2 in $CH_2Cl_2 + 1$ eq. CF	F ₃ COOH + +	140.0 + 14 141.4 + 14	42.7 + 140 14.3 + 140	0.4 + 214. $0.8 + 215.$	2 – 6 –	(c) (c) (c)
R = OPh in DMSO in DMSO + 1 eq. CF		137.0 + 13 137.1 + 13				(c) (c)
in CH_2Cl_2		138.4 + 14				(c)

Table 22. —cont.

Compound and state	Nitrogen shie nitromethane		om) referre	d to neat	No
R = SPh					
K = SFII in DMSO	⊥1128 ⊥	140 2 ± 1	139.1 + 214	4.3 –	(c)
in DMSO + 1 eq. CF_3COC			139.3 + 214		(c)
in CH_2Cl_2			39.5 + 210		(c)
in CH_2Cl_2 in $CH_2Cl_2 + 1$ eq. CF_3COC					(c)
$m \in H_2 \cup I_2 + I \text{ eq. } \cup F_3 \cup O \cup I_3$	/// T125.1 T	144.7 7 1	133.0 7 21.	0.0 -	(0)
2'-deoxyderivatives					
R = H					
in DMSO		130.6 + 1	139.1 + 208	3.1 –	(d)
in DMSO + 1 eq. CF_3COC	0H + 122.6 +	130.6 + 1	139.0 + 200	5.4 –	(d)
R = OPh					
in DMSO	+138.2 +	138.2 + 1	141.3 + 20	5.5 –	(d)
in DMSO + 1 eq. CF ₃ COO			141.8 + 20.		(d)
R = -N = CHNME					
in DMSO	+ 130.4 +	147.7 + 1	137.3 + 20	8.9 + 170.	7 (d)
in DMSO + 1 eq. CF ₃ COC			137.4 + 20		
$R = -N = C - NMe_2$					` ′
- · · · · · · · · · · · · · · · · · · ·					
in DMSO	+ 123.6 +	148.4 + 1	136.9 + 20	9.2 + 177.3	3 (d)
in $DMSO + 1$ eq. CF_3COC			136.0 + 20		
) N (6)					
$(7-\text{deazapurin}) \bigvee_{N} \bigvee_{N} \bigvee_{(9)} \bigvee_{N} \bigvee_{(9)} \bigvee_{N} \bigvee_{(9)} \bigvee_{N} \bigvee_{N} \bigvee_{(9)} \bigvee_{N} \bigvee_{N} \bigvee_{(9)} \bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{(9)} \bigvee_{N}	e derivatives)				
(7-deazapurin	e derivatives) N-1	N-3	N-9	NH_2	
$(7-\text{deazapurine}) \bigvee_{(2)} \bigvee_{\substack{N \\ (3)}} \bigvee_{\substack{1 \text{ ribityl}}} (7-\text{deazapurine})$		N-3	N-9	NH ₂	
(7-deazapurine) N N (9) N (9) Tibityl -Cl-7-deazapurine	<u>N-1</u>			NH ₂	(h)
(7-deazapurine (3) ribityl -Cl-7-deazapurine in DMSO, α-anomer	N-1 + 112.0	+ 134.1	+ 222.7	NH ₂	``. ′
(7-deazapurine (3) ribityl -Cl-7-deazapurine in DMSO, α-anomer in DMSO, β-anomer	<u>N-1</u>			NH ₂	`. ′
(7-deazapurine color-deazapurine in DMSO, α-anomer in DMSO, β-anomer color-deazapurine	N-1 + 112.0 + 113.0	+ 134.1 + 134.6	+ 222.7 + 222.6	NH ₂	(b)
(7-deazapurine clip (3) ribityl -Cl-7-deazapurine in DMSO, α-anomer in DMSO, β-anomer (-deoxy-6-Cl-7-deazapurine in DMSO	N-1 + 112.0 + 113.0 + 112.2	+ 134.1	+ 222.7	NH ₂	(b)
(7-deazapurine 1) N N (9) 2) N (1) N (9) (3) ribityl -Cl-7-deazapurine 10 DMSO, α-anomer 10 DMSO, β-anomer 10 Cdeoxy-6-Cl-7-deazapurine 10 DMSO 10 (-deoxy-3',5'-di-O-tolyl-6-Cl-7-de	N-1 + 112.0 + 113.0 + 112.2 leazapurine	+ 134.1 + 134.6 + 134.3	+ 222.7 + 222.6 + 219.2	NH ₂	(b) (b)
(7-deazapurine in DMSO, α-anomer in DMSO, β-anomer in DMSO '-deoxy-6-Cl-7-deazapurine in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-di in DMSO	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2	+ 134.1 + 134.6	+ 222.7 + 222.6	NH ₂	(b)
(7-deazapurine in DMSO, α-anomer in DMSO, β-anomer '-deoxy-6-Cl-7-deazapurine in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-di DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine	+ 134.1 + 134.6 + 134.3 + 133.6	+ 222.7 + 222.6 + 219.2 + 222.8	NH ₂	(b) (b) (b)
(7-deazapurine in DMSO, α-anomer in DMSO, β-anomer in DMSO '-deoxy-6-Cl-7-deazapurine in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-d in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2	+ 134.1 + 134.6 + 134.3	+ 222.7 + 222.6 + 219.2	NH ₂	(b) (b) (b)
(7-deazapurine in DMSO, α-anomer in DMSO, β-anomer -deoxy-6-Cl-7-deazapurine in DMSO -deoxy-3',5'-di-O-tolyl-6-Cl-7-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO -nH ₂ -6-Cl-7-deazapurine	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1	+134.1 +134.6 +134.3 +133.6 +143.2	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2	- - -	(b) (b) (b) (b)
Cl-7-deazapurine in DMSO, α-anomer in DMSO, β-anomer -deoxy-6-Cl-7-deazapurine in DMSO -deoxy-3',5'-di-O-tolyl-6-Cl-7-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO -NH ₂ -6-Cl-7-deazapurine in DMSO	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4	+ 134.1 + 134.6 + 134.3 + 133.6	+ 222.7 + 222.6 + 219.2 + 222.8	NH ₂ + 299.4	(b) (b) (b) (b)
Cl-7-deazapurine in DMSO, α-anomer in DMSO, β-anomer -deoxy-6-Cl-7-deazapurine in DMSO -deoxy-3',5'-di-O-tolyl-6-Cl-7-de in DMSO -deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO -NH ₂ -6-Cl-7-deazapurine in DMSO -deoxy-3',5'-di-O-tolyl-6-SMe-1	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4	+134.1 +134.6 +134.3 +133.6 +143.2 +183.9	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2 + 229.0	- - - + 299.4	(b)(b)(b)(b)(b)
Cl-7-deazapurine in DMSO, α-anomer in DMSO, β-anomer -deoxy-6-Cl-7-deazapurine in DMSO -deoxy-3',5'-di-O-tolyl-6-Cl-7-di DMSO -deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO NH ₂ -6-Cl-7-deazapurine in DMSO	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4	+134.1 +134.6 +134.3 +133.6 +143.2	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2	- - -	(b)(b)(b)(b)(b)
Cl-7-deazapurine in DMSO, α-anomer in DMSO, β-anomer in DMSO, β-anomer in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-de in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO '-deoxy-2-NH ₂ -6-Cl-7-deazapurine in DMSO '-deoxy-2-NH ₂ -6-Cl-7-deazapur in DMSO	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4	+134.1 +134.6 +134.3 +133.6 +143.2 +183.9	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2 + 229.0	- - - + 299.4	(b)(b)(b)(b)(b)
(7-deazapurine in DMSO, α-anomer in DMSO, β-anomer in DMSO '-deoxy-6-Cl-7-deazapurine in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-di in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO '-deoxy-3',5'-deazapurine in DMSO '-deoxy-2-NH ₂ -6-Cl-7-deazapur in DMSO	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4	+134.1 +134.6 +134.3 +133.6 +143.2 +183.9	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2 + 229.0	- - - + 299.4	(b) (b) (b) (b) (b)
(7-deazapurine in DMSO, α-anomer in DMSO, β-anomer in DMSO '-deoxy-6-Cl-7-deazapurine in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-di in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO '-deoxy-2',5'-deazapurine in DMSO '-deoxy-2-NH ₂ -6-Cl-7-deazapur in DMSO	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4 rine + 147.2	+134.1 +134.6 +134.3 +133.6 +143.2 +183.9	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2 + 229.0	- - - + 299.4	(b) (b) (b) (b) (b)
Cl-7-deazapurine in DMSO, α-anomer in DMSO, β-anomer in DMSO '-deoxy-6-Cl-7-deazapurine in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-di in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO -NH ₂ -6-Cl-7-deazapurine in DMSO -NH ₂ -6-Cl-7-deazapurine in DMSO (-deoxy-2-NH ₂ -6-Cl-7-deazapur in DMSO	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4 rine + 147.2	+134.1 +134.6 +134.3 +133.6 +143.2 +183.9	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2 + 229.0 + 225.6	- - - + 299.4	(b) (b) (b) (b) (b)
(7-deazapurine in DMSO, α-anomer in DMSO, β-anomer in DMSO '-deoxy-6-Cl-7-deazapurine in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-di in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-i in DMSO '-deoxy-3',5'-deazapurine in DMSO '-deoxy-2-NH ₂ -6-Cl-7-deazapur in DMSO '-deoxy-2-NH ₂ -6-Cl-7-deazapur in DMSO (3) N ribityl (cytidine anal	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4 rine + 147.2 dogue) N-1	+ 134.1 + 134.6 + 134.3 + 133.6 + 143.2 + 183.9 + 184.0	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2 + 229.0 + 225.6	- - + 299.4 + 299.6	(b) (b) (b) (b) (b)
Cl-7-deazapurine in DMSO, α-anomer in DMSO, β-anomer in DMSO '-deoxy-6-Cl-7-deazapurine in DMSO '-deoxy-3',5'-di-O-tolyl-6-Cl-7-di in DMSO '-deoxy-3',5'-di-O-tolyl-6-SMe-1 in DMSO -NH ₂ -6-Cl-7-deazapurine in DMSO '-deoxy-2-NH ₂ -6-Cl-7-deazapur in DMSO (3) (cytidine anal	N-1 + 112.0 + 113.0 + 112.2 deazapurine + 111.2 7-deazapurine + 119.1 + 147.4 tine + 147.2 dogue) N-1 + 232.0	+ 134.1 + 134.6 + 134.3 + 133.6 + 143.2 + 183.9 + 184.0	+ 222.7 + 222.6 + 219.2 + 222.8 + 225.2 + 229.0 + 225.6	- - - + 299.4 + 299.6	(b) (b) (b) (b) (b)

Table 22. —cont.

Compound and state	Nitrogen nitromet		g (ppm)	referred	to neat	Notes
$ \begin{array}{c c} & (6) \\ & (1) \\ & (1) \\ & (1) \\ & (2) \\ & (3) \end{array} $ (adenosine ana	.logue)					
(3) ribityl	N-1	N-3	N-7	N-9	N-6	
0.4 m in DMSO hydrochloride in DMSO					+ 207.6 + 205.3	
(R = CI)	H₂CH₂CH	₂ CH ₂ OC	СОМе)			
$ \begin{array}{c c} \stackrel{\scriptstyle R}{N} & \stackrel{\scriptstyle N}{\longrightarrow} \stackrel{\scriptstyle N}{N} \\ \stackrel{\scriptstyle (5)}{(4)} & \stackrel{\scriptstyle (3)}{(3)} \end{array} $	N-1	N-3	N-4	N-5	N-8	
in DMSO in DMSO + CF_3COOH					+ 195.5 + 194.7	
$ \begin{array}{ccc} Me & & & & \\ & & & & \\ N & & & \\ N & & \\ N & & & \\ N & &$	H₂CH₂CH	₂CH₂OC	OMe)			
(5) (4) (3)	N-1	N-3	N-4	N-5	N-9	
in DMSO in DMSO + CF ₃ COOH	+ 134.4 + 142.3	$\frac{1}{3} + 216.4$	+ 181.9 + 182.2	+85.7 $+85.7$	7 + 191.4 7 + 191.1	(x) (x)
	I₂CH₂CH₂	СН₂ОС	ОМе)			
(5) (4)	N-1	N-3	N-4	N-5	N-9	
in DMSO in DMSO + CF_3COOH					+ 194.3 + 192.7	
NMe ₂ (7) NNe ₂ (7) NNe ₃ (7) NMe (3) (9)	N-1 N	-3 N	-7 N	-9 N	Me ₂	
in DMSO in DMSO + 3,5-dichlorophenol	+ 148.2 + + 151.5 +				? (y)? (y)	

Table 22. —cont.

(1) N NMe (3) (9) N-1 N-3 N-7 N-9 in DMSO in DMSO + 3,5-dichlorophenol + 114.0 + 130.6 + 148.7 + 230.6 (y) (2-pyrimidone derivatives) (2-pyrimidone derivatives) (3) N-1 N-3 R R = OMe (0.95 m in DMSO + 1 eq. CF3COOH + 223.8 + 155.9 - (c) 0.95 m in DMSO + 1 eq. CF3COOH + 222.3 + 151.5 - (c) 0.8 m in DMSO + 1 eq. CF3COOH + 220.3 + 158.5 - (c) R = O-C_6 H_4-p-NO_2 (0.45 m in DMSO) + 225.6 + 155.3 - (c) R = O-C_6 H_4-p-NO_2 (0.5 m in DMSO) + 220.7 + 152.0 + 15.8 (c) 0.5 m in DMSO + 1 eq. CF3COOH + 219.8 + 154.5 + 15.8 (c) 0.5 m in DMSO + 1 eq. CF3COOH + 219.8 + 154.5 + 15.8 (c) 0.5 m in CH3Cl ₂ + 1 eq. CF3COOH + 219.1 + 136.7 - (c) R = O-CH3CH3-C6H4-p-NO_2 (0.5 m in DMSO) + 1 eq. CF3COOH + 219.1 + 136.7 - (c) R = O-CH3CH3-C6H4-p-NO_2 (0.3 m in DMSO) + 1 eq. CF3COOH + 219.1 + 136.7 - (c) R = O-CH3CH3-C6H4-p-NO_2 (0.3 m in DMSO) + 1 eq. CF3COOH + 223.2 + 154.5 + 10.5 (c) (0.3 m in DMSO) + 1 eq. CF3COOH + 223.2 + 154.5 + 10.5 (c) (0.3 m in DMSO) + 1 eq. CF3COOH + 223.2 + 154.5 + 10.5 (c) (0.3 m in DMSO) + 1 eq. CF3COOH + 224.2 + 157.2 + 11.9 (c) (1) N-1 in DMSO (1) N-1 i	Compound and state	Nitroger nitromet		(ppm) referr	ed to neat	Notes
in DMSO in DMSO + 3,5-dichlorophenol +114.0 +130.6 +148.7 +230.6 (y) (2-pyrimidone derivatives) (2-pyrimidone derivatives) (3) (3) (1) (1) (1) (1) (1) (1	(1) N N N N N N N N N N N N N N N N N N N	N. I	N. 2	N 7	N O	
in DMSO + 3,5-dichlorophenol +114.0 +130.6 +148.7 +230.6 (y) (3) (2-pyrimidone derivatives) N-1 N-3 R R = OMe 0.95 m in DMSO	(3) (9)	N-1	N-3		N-9	
R = OMe 0.95 m in DMSO		•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 N (1)	-pyrimidone	derivative	s)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ribityl-2', 3', 5'-triacetate		N-1	N-3	R	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P - OMo					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			± 225.8	±1559	_	(c)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CF,COOH			_	1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,		(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+222.3	+ 151.5	_	(c)
$ \begin{array}{c} R = O - C_6 H_4 - p - Me \\ 0.45 \text{ m in } CH_2 Cl_2 \\ R = O - C_6 H_4 - p - NO_2 \\ 0.5 \text{ m in } DMSO \\ 0.5 \text{ m in } DMSO \\ 0.5 \text{ m in } DMSO \\ 1 = SPh \\ 0.5 \text{ m in } CH_2 Cl_2 \\ 0.5 \text{ m in } CH_2 Cl_2 \\ 1 = Q - Q - Q - Q - Q - Q - Q - Q - Q - Q$	$0.8\mathrm{M}$ in $DMSO+1eq.C$	F ₁ COOH	+220.3	+158.5	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				` '
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			+225.6	+155.3	_	(c)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+152.0	+15.8	(c)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.5\mathrm{M}$ in DMSO + 1 eq. C.	F ₃ COOH	+219.8	+154.5	+15.8	(c)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-		-	(c)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+219.1	+ 136.7	_	(c)
0.3 m in DMSO + 1 eq. CF_3COOH + 223.3 + 154.6 + 10.6 (c) 0.3 m in CH_2CI_2 + 224.7 + 155.3 + 12.3 (c) 0.3 m in CH_2CI_2 + 1 eq. CF_3COOH + 224.2 + 157.2 + 11.9 (c) (u) NH2 (3) 1 N N N N N N-1 N-3 N-7 N-9 NH2 P-Me-C ₆ H ₄ SO ₃ + 140.1 + 230.9 + 131.9 + 201.4 + 268.8 MeSO ₃ + 144.8 + 230.7 ? + 217.1 + 271.4		2				
0.3 M in CH_2Cl_2 + 224.7 + 155.3 + 12.3 (c) 0.3 M in CH_2Cl_2 + 1 eq. CF_3COOH + 224.2 + 157.2 + 11.9 (c) (u) NH2 (3) N (9) NH2 (1) N (9) NH2 (1) N (9) NH2 (1) N (9) NH2 (1) N (. ,
0.3 M in $CH_2Cl_2 + 1$ eq. CF_3COOH + 224.2 + 157.2 + 11.9 (c) (u) NH2 (3) N (9) NH2 (1) N (9) NH2 (1) N (9) NH2 (1) N (1)		F ₃ COOH				3.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		E COOK	•			1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0.3 \mathrm{M}$ in $\mathrm{CH}_2\mathrm{Cl}_2 + 1 \mathrm{eq}$. C	F ₃ COOH	+ 224.2	+ 137.2	+ 11.9	(c)
NH ₂ (3) N _N (9) X N-1 N-3 N-7 N-9 NH ₂ p-Me-C ₆ H ₄ SO ₃ +140.1 +230.9 +131.9 +201.4 +268.8 MeSO ₃ +144.8 +230.7 ? +217.1 +271.4						()
NH ₂ (3) N ₁ (9) p-Me-C ₆ H ₄ SO ₃ +140.1 +230.9 +131.9 +201.4 +268.8 MeSO ₃ +144.8 +230.7 ? +217.1 +271.4		NI 1	N1 2	N 7 N 0	NILI	(u)
P-Me-C ₆ H ₄ SO ₃ + 140.1 + 230.9 + 131.9 + 201.4 + 268.8 MeSO ₃ + 144.8 + 230.7 ? + 217.1 + 271.4	人:			14-/ 14-9	14112	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1772 (3) 1 1 7 n-Me-Car	$I_4SO_3 + 140.$	1 + 230.9	+131.9 + 20	1.4 + 268.	8
	أرما					
O CMP -	57					
U U)					
	O O					

Table 22. —cont.

Compound and sta	Nitrogen shielding (ppm) referred to nitromethane	neat Notes
	$R^{1} = CH_{2}CH_{2}C_{6}H_{4}-p-NO_{2}$ $R^{2} = CO-C_{6}H_{4}-p-Bu^{1}$	
i	n DMSO N-1 N-3 N-7 N-9 2-1	NH
	+165.9 +157.8 +140.9 +210.4 +2	242.9 (h)
Nucleoside units in Escherichia coli 5S		(z)
in H_2O , $pH = 6$ GU base pairs AU base pairs	.0 + 225.4, + 225.2, + 224.7, + 225.2, + 225. + 223.4, + 222.9, + 221.7, + 221.0	2
Escherichia coli tR	NA N-3 atoms in uridine (U)	(A)
$in H_2O, pH = 7$ $tRNA_f^{Met}$	+229.6, +221.9, +222.2, +221.2, +221.	7,
tRNA ^{Lys}	+216.6, 198.1 +227.9, +222.6, +222.3, +218.9, +221. +219.3, +216.9, +217.9, +220.3, +217. +217.3, +197.6	
tRNA ^{Phe}	+217.5, +197.0 +229.1, +221.6. +220.0, +214.6, +217. +220.5, +196.9	3,
tRNA ^{Ser}	+ 221 to + 215; + 227 (dihydrouridine); + 200 (s ⁴ U9)	
$tRNA^{Tyr}$	$+221 \text{ to } +215; +201 \text{ (s}^4\text{U9)}$	
Yeast tRNAPhe	(pseudo)uridine and guanosine	(B)
in H_2O , $pH = 7$ pseudo-uridine (a ψ 39 ψ 55 T54(m ¹ A58) U or D U69(G4) AU12 or AU5 AU7 AU5 AU29,50; ψ 396 AU6 AU12 or AU5	 ψ) and uridine (U) units, N-3 atoms if not stated or +247 (N-1) +245 (N-1), +221.1 (N-3) +225.4 +224 +223.4 2 +221 +220.4 +219.6 (A31) +219.3, +218.7, +218.7 +218.3 	therwise

Table 22. --cont.

Compound and state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
U8(A14)	+217.3	
guanosine N-1 atoms		
G4(U69, m ₂ G26)	+ 237.4	
GC2,27,50,53; G19	+234.2, +233.2, +232.4	
GC3,28; G15(C48)	+234.3, +234.0, +232.8	
GC13	+233.4	
m ² G10(C25); GC51	+233.6	
m ⁷ G46(G22)	+230.3	
GC11	+235	

- (a) Data from ref. 823, 10.1 MHz¹⁵N INEPT spectra, field perpendicular to sample tube, referenced originally to NH₄⁺ in aqueous ammonium nitrate, +359.6 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1); 0.1-0.6 M solutions.
- (b) Data from refs. 126 and 1159, spectrometer not reported, 15 N spectra, referenced originally to nitromethane containing 5% DMSO-d₆, -0.1 ppm from neat nitromethane as can be reckoned from Table 2, conversion scheme II (Table 1).
- (c) Data from ref. 1160, 27.4 MHz¹⁵N gated decoupled and INEPT (proton-coupled) spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (d) Data from ref. 1161, details as in footnote (c).
- (e) Data from ref. 911, 40.5 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to NO₃⁻ in aqueous ammonium nitrate, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (f) Data from ref. 157, 1,6-15N-labelled compound, spectrometer not reported, ¹⁵N DEPT spectra, referenced originally to ammonium chloride in 10% HCl, +352.5 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
 - (g) Data from ref. 781, details as in footnote (c).
- (h) Data from ref. 1162, 50.7 MHz ¹⁵N spectra, calibration as in footnote (j), but reported fictitious ammonia standard, taken at +380.2 ppm from neat nitromethane; the latter value refers to a perpendicular field-to-sample axis setup (Table 2).
- (i) Data from refs. 1163 and 1164, 30.408 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M HNO₃, +6.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (j) Data from ref. 706, 1,2-¹⁵N-labelled guanosine, 30.42 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to aqueous NaNO₃, +3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (k) Data from ref. 148, details as in footnote (c).
- (1) Data from ref. 831, 50.5 and 40.4 MHz¹⁵N spectra, calibration as in footnote (k); proton-coupled spectra, concentration 0.2 m. In the GMP complex, the signal at +206 ppm shows Pd-¹⁵N coupling.
- (m) Data from ref. 1165, 20.27 MHz 15 N spectra (NOE-suppressed), field parallel to sample tube, referenced originally to saturated aqueous NH₄Cl, + 352.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); reported vs fictitious ammonia standard taken at + 27.3 ppm from the actual reference employed, see footnote (h) for comments; we retrieved the original data and carried out recalculation as above.
 - (n) Data from ref. 1166, details as in footnote (i).

Table 22.--cont.

- (o) See ref. 5, pp. 519-524, and references therein.
- (p) Data from ref. 1160, details as in footnote (v).
- (q) Data from ref. 1167, 36.49/360 MHz ¹⁵N/¹H spectra (FINDS = Fourier internuclear difference spectroscopy; FES = forbidden echo spectroscopy; JIDS = J-modulated internuclear difference spectroscopy), field parallel to sample tube, referenced originally to 2.9 m NH₄Cl in 1 m HCl, + 352.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); reported originally to fictitious ammonia standard taken at + 24.9 ppm from the actual reference employed, see comments in footnotes (h,m).
 - (r) Data from ref. 1168, details as in footnote (c).
- (s) Data from ref. 1169, ¹⁵N-labelled nucleotides from ¹⁵N-labelled bacteria, 50.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to NH₄⁺ in 4 M NH₄ NO₃ in 3 M HNO₃, + 359.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (t) Data from ref. 1170, details as in footnote (i).
- (u) Data from ref. 793, 40.5 MHz ¹⁵N spectra, field parallel to sample tube, calibration as in footnote (a).
- (v) Data from refs 124, 147 and 148, 27.4 MHz¹⁵N spectra (proton-decoupled, NOE-retained; and proton-coupled INEPT), field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; 0.4 M solutions.
 - (w) Data from ref. 752, details as in footnote (r).
 - (x) Data from ref. 1171, details as in footnote (c).
- (y) Data from ref. 539, 25.35 MHz ¹⁵N DEPT spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (z) Data from ref. 208, details as in footnote (q); ¹⁵N-labelled N-3 atoms in uridine units.
 - (A) Data from refs. 205 and 1172, ¹⁵N-labelled nucleoside units, details as in footnote (q).
- (B) Data from ref. 178, ¹⁵N-labelled tRNA, 500/50.7 MHz and 270/27.3 MHz ¹H{¹⁵N} INDOR, SPENDOR and FES spectra, field parallel to sample tube, referenced originally to liquid NH₁, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

Table 23. Nitrogen shieldings in phosphazenes, cyclophosphazenes and phosphazoles

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Ph ₃ P= N R	1.3-1.8 м		
· \ <u>-</u> /	in CDCl ₃		(a)
R —		(P=N)	
NO ₂		+ 280.1	
Cl		+302.6	
Н		+ 302.5	
Me		+ 305.4	
OMe		+308.4	
NMe ₂		+ 310.1	
$\begin{bmatrix} R - \sqrt{2} \end{bmatrix}_{3} P = N - Ph$	1.3-1.8 m in CDCl ₃		(a)
			` /
R		(P=N)	
CN		+ 304.3	
CF ₃		+ 304.2	
COOMe		+ 304.0	
F		+ 302.1	
Cl		+ 303.2	
Н		+ 302.5	
Me		+ 302.0	
OMe		+ 301.7	
$Ph_3P = N - SO_2 - R$	1.3-1.8 м in CDCl ₃		
R	02 0.,	(P=N)	
NO ₂		+ 283.3	
F		+ 284.4	
Cl		+ 284.2	
Br		+ 284.2	
H		+ 285.0	
Me		+ 284.6	
OMe		+ 284.5	
NH ₂		+ 284.5	
$Ph_3P = N - CO - R$	1.3-1.8 м in CDCl ₃		
R	III CDCI3	(P=N)	
NO ₂		+ 255.3	
CN		+ 256.1	
		+ 259.3	
F			

Table 23. —cont.

Compo	und		Solution or state	(ppm) re	n shielding eferred to romethane	Notes
Br H Me OMe				+ 258.6 + 259.0 + 259.6 + 260.4		
Bu ^t N=	P-N <but< td=""><td>e₃</td><td>in CDCl₃</td><td>+ 227.4 + 14.5</td><td>(P=N) (P-N)</td><td>(c) (c)</td></but<>	e ₃	in CDCl ₃	+ 227.4 + 14.5	(P=N) (P-N)	(c) (c)
Me ₃ SiN	=P-N(SiM	ſe₃)₂	in CDCl ₃	+217.2 +71.0	(P=N) (P-N)	(c) (c)
R^1R^2N	-P=NR ³		1-1.5 M in CHCl ₃ or benzene			(d)
Ri	R ²	R ³		(N≔P)	(N—P)	
SiMe ₃ SiMe ₃ Bu ^t Bu ^t SiMe ₃ SiMe ₃	SiMe ₃ SiMe ₃ SiMe ₃ Bu ¹ SiMe ₃ SiMe ₃ SiMe ₃	SiMe SiMe SiMe SiMe Bu ^t Bu ^t ₂ P Bu ^t ₂ P	(CDCl ₃ ?)	+ 213.6 + 220.5 + 249.9 + 224.4 + 254.3 + 229.4 + 220.3	+67.1 +74.2 -9.0 +36.1 ? +59.8 +96.4	
Cl ₂ P, Cl ₂ P, N P	NHPh N (4) PCl ₂ N (2)		in CDCl ₃	+ 290.2 (N + 260.1 (4 + 246.7 (2	,6-N)	(e) (e) (e)
Cl ₂ P, Cl ₂ P, N, (8)	NHPh N (4) CI NHPh NHPh (2)		in CDCl ₃	+ 289.0 (N + 275.5 (4 + 259.2 (2 + 244.5 (8	–N) ,6–N)	(e) (e) (e) (e)
CI ₂ P, (8) N CI	NHPh PCl ₂ NHPh (2) NHPh		in CDCl ₃	+ 294.0 (N + 259.2 (P		(e) (e)

Table 23. —cont.

Compound	Solution or	state	Nitrogen s (ppm) refe neat nitror	rred to	Notes
R N 11 N (2) N P (4)	in CDCl ₃ or	benzene			(f)
R		1-N	2-N	4-N	
Me its 4-N → BF ₃ adduct i-Pr PhCH ₃ Ph n-Bu, 4-N → BF ₃ adduct		+ 157.5 + 154.9 + 159.5 + 156.4 + 156.5 + 151.1	+ 12.1 + 22.8 + 14.9 + 11.8 + 10.4 + 21.0	+88.5 +142 +95.2 +86.5 +87.0 +138	
P (1) N (2) N (4) R ²	in CDCl ₃ or benzene				(f)
\mathbf{R}^1 \mathbf{R}^2		1-N	2-N	4-N	
Me Me its $4-N \rightarrow BF_3$ adduct Me i-Pr Me PhCH ₂ its $4-N \rightarrow BF_3$ adduct Me Ph Ph Ph its $4-N \rightarrow BF_3$ adduct	-	+ 120.4 + 120.2 + 122.0 + 119.4 + 119.1 + 117.8 + 100.3 + 101.4		+93.5 +147 +97.7 +93.1 ? +99.0 +100.3 +146	
Various structures containing P=N bonds	-				(g)
,	solid state		+ 133.9 + 18 (\sigma + 16 (\sigma + 403 (\sigma	11) 22)	(h)

⁽a) Data from refs 886 and 904, 20.28 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to aqueous KNO₃ standardized against neat nitromethane, but reported vs fictitious ammonia standard, taken at +380.2 ppm from neat nitromethane (this is erroneous, since the latter value comes from measurements where the field was perpendicular to sample tube, Table 2), conversion scheme IIIb (Table 1).

⁽b) Data from refs 885, 906, 1173, details as in footnote (a).

Table 23.—cont.

- (c) Data from ref. 153, 10.14 MHz ¹⁵N INEPT spectra (via $^3J_{\rm NH}=1-1.5$ Hz or 2-2.5 Hz), field perpendicular to sample tube, referenced originally to 0.1 m nitromethane in CDCl₃, + 3.2 ppm from neat nitromethane (Table 26), conversion scheme IIa (Table 1).
- (d) Data from ref. 910, 30.4 MHz and 25.4 MHz¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added to samples as a relaxation reagent.
- (e) Data from ref. 1174, 9.1 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (f) See footnote (d).
 - (g) See ref. 5, p. 525, and references therein.
- (h) Data from ref. 421, 20.30 MHz CPMAS and powder spectra of 15 N-labelled sample, referenced originally to NH₄ in solid NH₄NO₃, +358.4 ppm from neat nitromethane (Table 2); reported originally to fictitious ammonia standard taken at +23.8 ppm from the actual reference employed, i.e. +382.2 ppm from nitromethane.

Table 24. Nitrogen shieldings in some imines, nitrones, oximes and related structures

Thinnes, immonium ions, and imino complexes R C=N R Solvent?	Notes	Nitrogen shielding (ppm) referred to neat nitromethane	Solution or state		ound	Comp
R ¹ R ² R ³ H Ph Ph Ph + 53.2 H Ph 2-F-phenyl + 67.8 H Ph 4-F-phenyl + 57.1 H Ph 2,4-F ₂ -phenyl + 71.5 H Ph Ph + 53.2 H C ₆ F ₅ + 87.9 H Ph Ph + 53.2 H C ₆ F ₅ Ph + 29.1 H C ₆ F ₅ Ph + 29.1 H C ₆ F ₅ 2-F-phenyl + 42.8 H C ₆ F ₅ 2-F-phenyl + 43.3 H C ₆ F ₅ 2-F-phenyl + 46.3 H C ₆ F ₅ 2-F-phenyl + 46.3 H C ₆ F ₅ 2-F-phenyl + 46.3 C ₆ F ₅ C ₆ F ₅ C ₆ F ₅ + 63.5 C ₆ F ₅ C ₆ F ₅ 2-3.5,6-F ₄ -phenyl + 27.5 C ₆ F ₅ C ₆ F ₅ 2-3.5,6-F ₄ -phenyl + 60.8 C ₆ F ₅ C ₆ F ₅ C ₆ F ₅ + 63.9			complexes	ium ions, and imino	s, immon	Imines
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a)		Solvent?		·N R3	
H Ph Ph Ph +53.2 H Ph 2-F-phenyl +67.8 H Ph 4-F-phenyl +57.1 H Ph 2,4-F ₂ -phenyl +71.5 H Ph C ₆ F ₅ +87.9 H Ph Ph +53.2 H C ₆ F ₅ Ph +29.1 H C ₆ F ₅ Ph +29.1 H C ₆ F ₅ 2-F-phenyl +42.8 H C ₆ F ₅ 2-F-phenyl +42.8 H C ₆ F ₅ 2-F-phenyl +46.3 H C ₆ F ₅ 2,4-F ₂ -phenyl +46.3 H C ₆ F ₅ C ₆ F ₅ 2,3,5,6-F ₄ -phenyl +27.5 C ₆ F ₅ C ₆ F ₅ 2,3,5,6-F ₄ -phenyl +60.8 C ₆ F ₅ C ₆ F ₅ C ₆ F ₅ 1 +63.9						R^2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				\mathbb{R}^3	\mathbb{R}^2	\mathbb{R}^1
H Ph 2-F-phenyl +67.8 H Ph 4-F-phenyl +57.1 H Ph 2,4-F ₂ -phenyl +71.5 H Ph C ₆ F ₅ +87.9 H Ph Ph +53.2 H C ₆ F ₅ Ph +29.1 H C ₆ F ₅ 2-F-phenyl +42.8 H C ₆ F ₅ 2,4-F ₂ -phenyl +33.3 H C ₆ F ₅ 2,4-F ₂ -phenyl +46.3 H C ₆ F ₅ C ₆ F ₅ 2,3,5,6-F ₄ -phenyl +27.5 C ₆ F ₅ C ₆ F ₅ C ₆ F ₅ 2,3,5,6-F ₄ -phenyl +60.8 C ₆ F ₅ C ₆ F ₅ C ₆ F ₅ 1+63.9 Ph Solid state +62 (=N) +27 to +132°C +217 (NH) Ph Ph +27 to +132°C +217 (NH) Ph +87.7 2-OH-phenyl 2,4-Me ₂ -phenyl +87.8 2-OH-phenyl 2,4-Me ₂ -phenyl +90.0 (+13.0, NO ₂) Ph 2-OH-phenyl 4-Me-phenyl +90.0 (+13.0, NO ₂) Ph 2-OH-phenyl +83.6 2-OH-phenyl 2-OH-phenyl +83.6 2-OH-phenyl 2-OH-phenyl +83.6 2-Br-phenyl +83.6 2-OH-phenyl +83.6		+53.2		Ph	Ph	H
H Ph 2,4-F ₂ -phenyl +71.5 H Ph C ₆ F ₅ +87.9 H Ph Ph +53.2 H C ₆ F ₅ 2-F-phenyl +29.1 H C ₆ F ₅ 2-F-phenyl +42.8 H C ₆ F ₅ 2,4-F ₂ -phenyl +46.3 H C ₆ F ₅ C ₆ F ₅ +63.5 C ₆ F ₅ C ₆ F ₅ 4-F-phenyl +27.5 C ₆ F ₅ C ₆ F ₅ 2,3,5,6-F ₄ -phenyl +60.8 C ₆ F ₅ C ₆ F ₅ C ₆ F ₅ +63.9 Ph +27 to +132°C +217 (NH) Ph Ph +27 to +132°C +217 (NH) R ¹ R ² 2-OH-phenyl +85.8 2-OH-phenyl 2,4-Me ₂ -phenyl +87.8 2-OH-phenyl 4-Me ₂ -phenyl +87.8 2-OH-phenyl 4-Me ₂ -phenyl +87.8 2-OH-phenyl 4-Me ₂ -phenyl +87.8 2-OH-phenyl 4-Mo ₂ -phenyl +90.0 (+13.0, NO ₂) Ph 2-OH-phenyl +83.6 2-OH-phenyl 4-NO ₂ -phenyl +83.6 2-OH-phenyl 4-NO ₂ -phenyl +83.6 2-OH-phenyl 4-NO ₂ -phenyl +83.6 2-OH-phenyl 4-NO ₂ -phenyl +78.5		+67.8		2-F-phenyl		
H Ph C_6F_5 + 87.9 H Ph Ph Ph + 53.2 H C_6F_5 Ph + 29.1 H C_6F_5 2-F-phenyl + 42.8 H C_6F_5 2-F-phenyl + 46.3 H C_6F_5 2,4-F ₂ -phenyl + 46.3 H C_6F_5 2,4-F ₂ -phenyl + 27.5 C_6F_5 C_6F_5 2,3,5,6-F ₄ -phenyl + 60.8 C_6F_5 C_6F_5 2,3,5,6-F ₄ -phenyl + 60.8 C_6F_5 C_6F_5 C_6F_5 + 63.9 Ph + 27 to +132°C +217 (NH) R C=N R R^2				4-F-phenyl		
H Ph Ph +53.2 H C_6F_5 Ph +29.1 H C_6F_5 2-F-phenyl +42.8 H C_6F_5 2-F-phenyl +33.3 H C_6F_5 2,4-F ₂ -phenyl +46.3 H C_6F_5 2,4-F ₂ -phenyl +46.3 H C_6F_5 C_6F_5 4-F-phenyl +27.5 C_6F_5 C_6F_5 2,3,5,6-F ₄ -phenyl +60.8 C_6F_5 C_6F_5 C_6F_5 1.3,5,6-F ₄ -phenyl +60.8 C_6F_5 C_6F_5 1.3,5,6-F ₄ -phenyl +60.9 Ph +27 to +132°C +217 (NH) R C=N R_2						
H C_6F_5 Ph $+29.1$ H C_6F_5 2-F-phenyl $+42.8$ H C_6F_5 2-F-phenyl $+33.3$ H C_6F_5 2-4-F-phenyl $+46.3$ H C_6F_5 2-4-F-phenyl $+27.5$ C_6F_5 C_6F_5 $-4-F-phenyl +27.5 C_6F_5 C_6F_5 -4-F-phenyl +27.5 C_6F_5 C_6F_5 -4-F-phenyl +27.5 C_6F_5 -4$						
H C_6F_5 2-F-phenyl +42.8 H C_6F_5 4-F-phenyl +33.3 H C_6F_5 2,4-F ₂ -phenyl +46.3 H C_6F_5 C_6F_5 +63.5 C_6F_5 C_6F_5 4-F-phenyl +27.5 C_6F_5 C_6F_5 2,3,5,6-F ₄ -phenyl +60.8 C_6F_5 C_6F_5 C_6F_5 +63.9 Ph solid state +62 (=N) +27 to +132°C +217 (NH) Ph +27 to +132°C +217 (NH) R C=N R R^2 R^2 R^2 R^2 R^2 R^2 R^2 R^2 R^2 R^3						
H C_6F_5 4-F-phenyl +33.3 H C_6F_5 2,4-F ₂ -phenyl +46.3 H C_6F_5 C_6F_5 +63.5 C_6F_5 C_6F_5 4-F-phenyl +27.5 C_6F_5 C_6F_5 2,3,5,6-F ₄ -phenyl +60.8 C_6F_5 C_6F_5 C_6F_5 +63.9 Ph solid state +62 (=N) +27 to +132°C +217 (NH) Ph Ph						
H C_6F_5 2,4- F_2 -phenyl +46.3 H C_6F_5 C_6F_5 +63.5 C_6F_5 C_6F_5 4-F-phenyl +27.5 C_6F_5 C_6F_5 2,3,5,6- F_4 -phenyl +60.8 C_6F_5 C_6F_5 C_6F_5 +63.9 Ph solid state +62 (=N) +27 to +132°C +217 (NH) Ph Ph						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					C ₄ F ₄	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					C_6F_5	C_6F_5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				C_6F_5	C_6F_5	
R ¹ R ² 2-OH-phenyl 2-Br-phenyl +87.7 2-OH-phenyl 4-Me-phenyl +85.8 2-OH-phenyl 2,4-Me ₂ -phenyl +87.8 2-OH-phenyl 4-NO ₂ -phenyl +90.0 (+13.0, NO ₂) Ph 2-OH-phenyl +83.6 2-Br-phenyl 2-OH-phenyl +78.5	(b) (b)			_Ph		Ph Pi
2-OH-phenyl 2-Br-phenyl +87.7 2-OH-phenyl 4-Me-phenyl +85.8 2-OH-phenyl 2,4-Me ₂ -phenyl +87.8 2-OH-phenyl 4-NO ₂ -phenyl +90.0 (+13.0, NO ₂) Ph 2-OH-phenyl +83.6 2-Br-phenyl 2-OH-phenyl +78.5	(c)		OCl ₃	in CI	R_2	H>C=
2-OH-phenyl 4-Me-phenyl + 85.8 2-OH-phenyl 2,4-Me ₂ -phenyl + 87.8 2-OH-phenyl 4-NO ₂ -phenyl + 90.0 (+ 13.0, NO ₂) Ph 2-OH-phenyl + 83.6 2-Br-phenyl 2-OH-phenyl + 78.5				R ²		\mathbb{R}^1
2-OH-phenyl 4-Me-phenyl + 85.8 2-OH-phenyl 2,4-Me ₂ -phenyl + 87.8 2-OH-phenyl 4-NO ₂ -phenyl + 90.0 (+ 13.0, NO ₂) Ph 2-OH-phenyl + 83.6 2-Br-phenyl 2-OH-phenyl + 78.5			+ 87.7	2-Br-phenyl	phenyl	2-OH-
2-OH-phenyl 2,4-Me ₂ -phenyl + 87.8 2-OH-phenyl 4-NO ₂ -phenyl + 90.0 (+ 13.0, NO ₂) Ph 2-OH-phenyl + 83.6 2-Br-phenyl 2-OH-phenyl + 78.5						
Ph 2-OH-phenyl + 83.6 2-Br-phenyl 2-OH-phenyl + 78.5			enyl + 87.8	2,4-Me ₂ -pho	phenyl	2-OH-
2-Br-phenyl 2-OH-phenyl + 78.5		$(+13.0, NO_2)$	yl + 90.0	4-NO ₂ -pher	phenyl	
4-NO ₂ -pnenyl 2-OH-pnenyl $+ /1.0 (+13.0, NO2)$		(120 10)		2-OH-pheny		
		$+13.0, NO_2)$	/1 + /1.0 (2-OH-pnen	-pnenyi	4-NO ₂
in CDCl ₃	(d)		OCl ₃)—c(_N-	

and their Pd complexes

Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Note
R Pd N-Ph				
R	Imine	Con	plex	
5-OMe	+ 52.6	+ 13	35.0	
4-OMe	+61.5	+14		
5-Me	+ 55.2	+13		
4-Me	+ 56.7	+ 13		
H	+55.0	+ 13		
5-Cl	+49.5	+ 13		
4-Cl	+ 52.1	+ 13		
5-NO ₂	+45.2	+ 13	30.2	
4-NO ₂	+40.3	+ 12	27.8	
CI Pd N-Ph	in CDCl	3 + 12	29.3	(d)
MeO Pd Ph Ph Ph Ph Ph Ph Ph Ph	in CDCl	3 +1	11.4	(d)
MeO Pd N-Ph L Cl and H Cl N-Ph	<i>trans-</i> L,N) in CDCl	3		(d)

Table 24. —cont.

Compound		Solution or	state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
L			(=)	N—Pd)	
Pyridine	trans, 53%	6		28.0	
NHEt ₂	cis, 47% trans, 44%	6		31.0 26.1	
PPh ₃	cis, 56%		+1	33.4 07.6	
H'C	TeMe				(e)
R	J ₂		(=N-	_Ta)	
			`		
4-NO ₂ 3-NO ₂	(in DMSO))	+ 64 + 76		
4-Br H			+ 77 + 82		
4-Me			+85		
4-OMe 4-NMe ₂	(in DMF)		+92 +97		
H C	in CD ₃	OD		+ 63 =NPr ⁱ)	(f)
Mc Ag +	CF ₃ SO ₃			102 (ring N)	(f)
\sim	$\left\langle \right\rangle_{N} = \left\langle \right\rangle_{N}$				(g)
Ř R	in CD ₃ OD	.(=N)		Ring N	
— Н	•	+ 33.6		+78.3	
Me		+34.3		+77.5	

Table 24. —cont.

Compound	S	Solution or sta		Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R Ag +	Ag + R (CF)	₃ SO ₃ -) ₂			(g)
R	in CD ₃ OD	(=	N)_	Ring N	
H	(spatial non-equivale		80.2 77.1	+ 102.5 + 111.3	
Ме	(spatial non-equivale		- 82.0 - 79.0	+ 104.2 + 111.0	
	N = N				(h)
R	in CD ₃ OD	(=	N)	Ring N	
H Me			17.8 50.4	+ 75.2 + 77.9	
R Ag +	Ag + R (CF	3,SO ₃ ⁻) ₂			(h)
	in CD ₃ OD	(=	N)_	Ring N	
R = Me		+1	89.4	+ 107.8	
		_			

Table 24. —cont.			
Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
$\begin{bmatrix} & & & & & & \\ & & & & & & \\ & & & & & $	(CF ₃ SO ₃ ⁻) ₂		(h)
R in CD ₃ OD	(=N)	Ring N	
H Me	+ 94.8 + 95.0	+111.3 +113.4	
Me S N	Me + 54.3	3	(i)
Me S N N Ag	$\begin{bmatrix} S \\ Me \\ S \end{bmatrix} Me $ $(CF_3SO_3^-)_2$		(i)
in CD ₂ Cl ₂	+83.7	, +96.6	
Protonated Schiff bases in bacteriorhodopsin retinal	solid state		(j)
Me Me Me	—— N N Lye "bR₅68"		
✓ ¹Me	ns, 40%	+ 208.0 (=NH ⁺) + 201.3 (=NH ⁺) + 259.3 (amide backt + 344.5 (LysNH ₃ ⁺)	oone)

Table 24. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me Me H(1:1 mo	N ^{Bu} solid state		(j)
Acid (pK_{α})			
None HI (-9.25) HBr (-8.5) HCl (-6.1) 2,4,6-trinitrophenol (0.37) Cl ₃ CCOOH (0.51) F ₃ CCOOH (0.52) Br ₃ CCOOH (0.72) F ₂ CHCOOH (1.34) Cl ₂ CHCOOH (1.35) 2-chloro-4,6-dinitrophenol (2.1) 2,4-dibromo-3,6-dinitrophenol (2.9) 2,6-dibromo-4-nitrophenol (3.4)	+ 178 + 187 + 184 + 183	8.5 6.8 1.2 2.0 8.7 2.4 8.1 9.3, +183.2 3.2 7.6 4.5 3.1	
"HBA" + $(1:1 \text{ mol})$ additive (pK_a)		OCL in CD OD	(m)
None EtCOOH (4.90) O₂NCH₂CH₂COOH (3.90) ICH₂COOH (3.15) BrCH₂COOH (2.95) CICH₂COOH (2.85) NCCH₂COOH (2.45) HC≡CCOOH (1.85) Cl₃CCOOH (0.66) F₃CCOOH (0.23) HCl (-6.90) HI (-9.20)	+ 3: + 6: + 84 + 11: + 13: + 15: + 16: + 16: + 17: + 17: + 19:	07 +82.6 4.6 +148.3 1.8 +161.3 0.2 - 1.2 +175.1 7.9 - 2.4 - 8.5 +176.5 1.1 +176.7 1.7 +176.9, +176.6	
N=CH CH C = NCH CM	in H₂O in DMSO	+ 218.2 + 67.4	(k)
MeCCH ₂ CH ₂ C = NCH ₂ CMe ₃	ш рмгоо	· +0/.4	(1)

Table 24. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Note
MeCCH ₂ CH ₂ C =NCH ₂ CH	HMe ₂ in DMSO	+ 70.5	(1)
$N \stackrel{\frown}{=} C_{R^3}$	in CDCl ₃		(n)
\mathbb{R}^1 \mathbb{R}^2	R ³		
Ph Me Ph H Ph H Ph H	Me Me Ph COOEt	+83.5 +98.0 +104.3 +63.2	
NH-	NH-]	NH=\bigs_NH=\bigs_m	(o)
	in solid state		(0)
NH in amino-amino units NH in amino-imino units =N in imino-amino units =N in imino-imino units	+301 +294 +23 +35 t	so +54	
$ \begin{array}{c} R \\ Me \end{array} $ $ \begin{array}{c} C = N \\ Me \end{array} $ $ Me $	in acetone-d ₆		(p)
R X		(=N)	
Me N-O N-OH Ph N-O	(nitroxyl radical) (hydroxylamino moiety)	+ 23.4	
N—OH N—OH	(in CD ₃ OD)	+ 47.6 + 28.7 + 54.9	
N C COOMe	in CDCl ₃	+17.1 (=N) +247.8 (N) +120.4 (CN)	(q) (q) (q)

Table 24. —cont.

Table 24. —cons				
Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
O N H N C C C O	ОМе	in CDCl ₃	+ 198.8 (=N) + 337.1 (N) + 105.9 (CN)	(q) (q) (q)
Imino moieties in	n guanidines a	and amidines see Tab	le 10	
Aromatic imines		see Tab	les 19, 20	
Ketenimines R ₂ C=C=N-R		various	+161 to +186	(r)
Nitrones (imine /	V-oxides)			
$R_2C=N \leq R$		see also ref. 5, p.	546	
PhCH=N(O)Ph $(C_6F_5)_2C$ =N(O)		solvent? solvent?	+118.8	(s) (s)
R				
Ph 4-fluorophenyl 2,3,5,6-tetrafluor C ₆ F ₅	ophenyl		+ 105.0 + 98.0 + 124.3 + 126.1	
$Me \xrightarrow{R} C = N \xrightarrow{Me} Me$ $Me \xrightarrow{X} Me$		in acetone-d ₆		(t)
R	X		(=NO)	
Me	N—O.	(nitroxyl radical)	+77.2	
CH ₂ Br	N—OH N—OH	(hydroxylamino mo	iety) + 93.7 + 69.3 + 77.2	
Ph	N—OH		+ 102.4 + 84.0	•
p-tolyl	N—OMe N—O' N—OH		+ 85.9 + 103.4 + 90.1	
o-nitrophenyl	N—OH		+ 77.6 + 83.0	
Ph	N—OH	$(in CD_3OD)$	+ 98.5 + 90.7	

Table 24. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Oximes and their ethers R ₂ C=N-O-R	see also ref. 5, pp. 54	14–545	
Me N-OH	(σ_{22})	+ 11 - 200 + 32 + 200	(u)
MeO	solid state (isotropic) (σ_{11}) (σ_{22})	+ 15 - 195 + 37 + 202	(u)
MeO — C Me OMe N—OH	solid state (isotropic) (σ_{11}) - (σ_{22})	+ 13 - 199 + 37 + 200	(u)
$\langle -N - C'_{N-OH} \rangle$	in DMSO	-0.6 (NOH) +69.6 (N)	(v) (v)
$N = N - C_{N-OH}$	in DMSO	+4.7 (NOH) +64.3 (N)	(v) (v)
N_C_N_OH	in DMSO	-3.2 (NOH) +64.8 (N)	(v) (v)
C=NOH CH ₂ (Br ⁻) ₂ CH ₂ CH ₂ CH ₂ CH ₂ NOH	in DMSO	– 23.9 (NOH)	(v)
R O C H R O C H R O C	in DMSO		(w)

Table 24. —cont.

Compound	:	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
R				
Me H SiMe ₃	(Z) (Z) (Z)	- 19 - 10 - 10	5.8 5.2	
Br NO ₂	(E) (Z) (E) (Z)	-9 -14 -9 +3	4.5 9.4	
	(E)	+7		
RON= CH Me X Me X Me	in acetone	-d ₆		(x)
R X H N-O' H N-OH	(nitroxyl (hydroxy	radical) /lamino moiety)	(oxime) - 29.9 - 20.2	
RON=CH O Me C=N Me Me X Me	in acetor	ne-d ₆		(x)
R X H N—O' H N—Me Me N—O' Me N—OH	(nitroxyl	radical)	(oxime) - 57.6 - 9.1 - 70.8 - 25.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vent?			(y)
R =NOR	2,6-N	3-NH ₂	5-NH ₂	
H - 28.0 Me - 30.2	+ 159.3 + 157.4		+ 274.3 + 275.1	

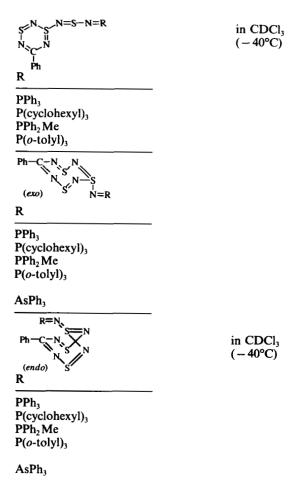
Table 24. —cont.

Compound			Solution or s	tate	(ppm	ogen shielding) referred to nitromethane	Notes
OH NH ₂ NH ₂ NC NH ₂ NC (E-isomer)	O,	NHO NH NHO NH NHO NH NHO NHO NHO br>NHO NHO NHO NHO NHO NHO NHO NHO NHO NHO NHO	solvent?				(y)
R	Ì	=NOH	N—R	N=	=	NH_2	
H (Z) CH ₂ Ph (Z) (E)		-40.9 -41.8 -45.2	+ 209.5 + 209.7 + 206.6	+ 174 + 181 + 177	.3	+ 276.8 + 270.5 + 261.0	
		CN I					
Me — SO	•	$_{-N}$ $\stackrel{\dot{C}}{\sim}_{COO}$	Me		.0 (==! .2 (CN	NO) N)	(q) (q)
NOR 11	111	CDCI ₃					(z)
COOR'	R	R ¹					(2)
NH ₂	Me Me	Et H	in DMSO in DMSO in DMSO/HCI		– 11.7	(=N-0) (=N-0) (=N-0)	
	н	Et	in CF ₃ COOH in DMSO in DMSO/HCI	,		(=N-O) (=N-O)	
R ₂ N C—NOH		see Tat	ole 10				
R' (amidoximes)							
R_2N C—NOH R_2N		see Tab	ole 10				
(N-hydroxyguani	dines)			_		

- (a) Data from ref. 574, 15 N-labelled samples, 30.4 MHz 15 N spectra, field parallel to sample tube, referenced originally to liquid NH₃, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (b) Data from ref. 430, 15 N-labelled compound, 9.12 MHz 15 N CPMAS spectra, referenced originally to solid (NH₄)₂SO₄, +355.7 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects; dynamic nitrogen NMR spectra were observed in the solid, owing to the prototropic tautomerization processes involving the NH and =N moieties.
- (c) Data from ref. 548, 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; (Cracac)₃ added as a relaxation reagent.

- (d) Data from ref. 139, ¹⁵N-labelled imine, 25.33 MHz¹⁵N spectra, inverse-gated proton decoupling in order to suppress NOE, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; the assignments imine vs its complex are erroneously reversed in the original table in the paper quoted, but they are correct in the text concerned; an INEPT spectrum, via ²J(NH), was taken in the case of the NHEt, ligand.
- (e) Data from ref. 796, 21.68 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to NO₃, probably in aqueous NaNO₃, + 3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (f) Data from ref. 946, 30.4 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced originally to nitromethane containing 20% benzene-d₅, ca. +0.8 ppm from neat nitromethane, as can be reckoned from Table 26, conversion scheme IIb (Table 1).
 - (g) Data from ref. 136, details as in footnote (f).
 - (h) Data from ref. 137, details as in footnote (f).
 - (i) Data from ref. 138, details as in footnote (f).
- (j) Data from refs 329, 348, 408, 410 and 1175, ¹⁵N-labelled samples of retinal in bacteriorhodopsin in the purple membrane of *Halobacterium halobium*, 32.2 MHz ¹⁵N MASS and static powder spectra, referenced originally to 5.6 M aqueous NH₄Cl, +352.9 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects.
- (k) Data from refs 1074 and 1176, 25.35 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (i) Data from ref. 1020, 30.4 MHz ¹⁵N spectra, other details as in footnote (k).
- (m) Data from ref. 108, 40.4 MHz¹⁵N spectra, gated-decoupled for C=N, and INEPT for C=NH⁺, field parallel to sample tube, referenced originally to neat formamide, +268.8 ppm from neat nitromethane (Table 2), conversion scheme IVb (Table 1).
 - (n) Data from ref. 118, 36.5 MHz ¹⁵N spectra, other details as in footnote (k).
- (o) Data from ref. 376, 15.24 MHz¹⁵N CPMAS spectra, referenced originally to solid (NH₄)₂SO₄, +355.7 ppm (uncorrected) from neat nitromethane (Table 2).
 - (p) Data from ref. 657, ¹⁵N-labelled imino moiety, details as in footnote (t).
- (q) Data from ref. 1036, 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported originally vs fictitious ammonia standard taken at +380.2 ppm from neat nitromethane (the latter value actually comes from measurements where the field was perpendicular to sample tube, see Table 2).
 - (r) See ref. 5, p. 531, and references therein.
- (s) Data from ref. 574, ¹⁵N-labelled samples, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to liquid ammonia, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); solvent not reported.
- (t) Data from ref. 657, ¹⁵N-labelled nitrone moiety, 21.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane via a calibrated sample of neat aniline, uncorrected for bulk susceptibility effects; the solutions included, respectively, both the radical and its hydroxylamino diamagnetic analogue.
- (u) Data from ref. 330, 20.3 MHz 15 N CPMAS and static powder spectra, referenced originally to NH₄⁺ in solid (NH₄)₂NO₃, + 359.6 ppm (uncorrected) from neat nitromethane (Table 2), but reported vs fictitious ammonia standard taken at +23.8 ppm from the reference employed; we retrieved the original data, and carried out the recalculations as noted above.
- (v) Data from ref. 815, 9.12 MHz¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (w) Data from ref. 817, details as in footnote (v).
 - (x) 15N-labelled oxime moiety, see footnote (t).
 - (y) Data from ref. 797, 30.4 MHz ¹⁵N spectra, other details as in footnote (k).
- (z) Data from ref. 805, 50.7 MHz¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.

Table 25. Nitrogen shielding in various sulphur-nitrogen compounds containing sulphur-nitrogen bonds


Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Bu ^t —N=S=O	neat liquid	+69	(a)
(sulphinylamine structure)	_		
Ph-N=S=O	neat liquid	+66	(a)
	in CCl ₄	+62.5	(b)
Substituted Ph-NSO	in CCl ₄		(b)
2-F		+ 70.8	
3-F		+81.3	
4-F		+81.7	
2,4-F ₂		+84.6	
2,6-F ₂		+88.1	
2,3,4,5,6-F ₅		+89.6	
2,3,5,6-F ₄ -4-CF ₃		+89.9	
$\frac{1}{R^1 - N - R^2}$			
(sulphurdiimide structure)			
<u>R</u>			
o-tolyl	in benzene	+84.1	(c)
<i>p</i> -tolyl	in benzene	+83.0	(c)
2,4,6-Me ₃ -phenyl	in benzene	+83.2	(c)
Bu ^t	in CDCl ₃	+ 54.9	(d)
Me ₃ Si	neat liquid	+61	(e)
	in CDCl ₃	+ 54.2	(d)
Me ₂ ClSi	in CDCl ₃	+ 58.6	(d)
N N	in CDCl ₃	+89.5 (N=S)	(d)
	in CDCi,	+ 330.8 (NMe)	(d)
Me		1 330.0 (141416)	(4)

$$R^1-N_{S}$$
 $N-R^2$

(sulphur R ¹	diimide structure) R ²		NR¹ NR²	
Me ₃ Si	Bu ^t	neat liquid in CDCl ₃	+ 58 + 70 - + 68.2	(e)
Me ₃ Si	Ph	in CDCl ₃	- + 08.2 - + 77.0	(d) (d)
Me ₃ Si	2,4-Me ₂ -phenyl	in CDCl ₃	+ 67.7 + 86.3	(d)
N B-	— Bu ^t	in CDCl ₃	+ 66.5 + 86.9 + 330.8 (NMe)	(d) (d)
O ₂ N—	$\sum_{N=S'} N - SiMe_3$	in benzene	+71 (SNS) +100 (SNSi) +12 (NO ₂)	(e) (e) (e)
OSS NH	-	in D_2O	+ 289	(e)
	I	in benzene	+ 260	(e)
Ö	$= N S \leq_{O}^{O}$	in tetrahydrofuran	+78 (SNS) +145 (SNSO ₂)	(e) (e)
O S N	a d	in benzene	+217	(e)
C ₁				

Table 25. —cont.

Compound	Solution or state	Nitrogen to neat r	shielding (p itromethane	pm) referred	Notes
(4) N (5) S N (3)	in CDCl ₃	+ 327.0 + 205.8 + 51.8	(3,4-N)		(f) (f) (f)
Ph CI S N CI N S N	0.25 м in CCl ₄ (52 to -70°C) 0.25 м in SO ₂	+ 263 + 259			(g) (g)
CI CI CI N N N R	in CH ₂ Cl ₂				(h)
R		CNS	SNS	R	
Me ₂ N Et ₂ N (i-Pr) ₂ N CCl ₃ t-Bu Ph		+211 +213 +205 +181 +191 +196	+ 263 + 240 + 241 + 248 + 242 + 237	+211 +213 +220	

SNR	CNS	CNS	SNS	SN
+275	+ 185	+ 222	+ 275	+
+282	-	-	+282	
+274	+188	+222	+276	+
+ 272	+ 190	+221	+279	+
DNG				
RNS	(CNS	SN	IS
+ 303.	8 -	CNS + 189.6		
+ 303. + 320.	8 -	+ 189.6 + 190.2	+:	224.
+ 303. + 320. + 305.	8 - 8 - 8 -	+ 189.6 + 190.2 + 190.6	+:	224. 223.
+ 303. + 320.	8 - 8 - 8 -	+ 189.6 + 190.2 + 190.6 + 191.7	+:	224. 223. 225.
+ 303. + 320. + 305.	8 - 8 - 8 -	+ 189.6 + 190.2 + 190.6	+:	224. 223. 225. 223. 227. 220.

RNS CNS SNS +311.2+214.5+196.2+324.5+195.7+213.4+318.6+197.1+212.6+308.3+196.5,+214.7+195.4+308.4+194.4+204.9 (i)

(i)

Table 25. —cont.

Compound	Solution or state	Nitrogen s to neat nit	chielding (ppm) referred romethane	Notes
R Cr(CO); N P NH S N S S	in acetone			(j)
Bu ^t NH ₂		+ 259.7 (N + 311.4 (N + 313.4 (N	NH)	
S—S N + N NR ₂	in CH ₂ Cl ₂			(k)
R		CNS	NR_2	
Me Et Pr ⁱ		+ 69 + 62 + 59	+ 318 + 250 + 244	
$(SNS)^+AeF_6^-$ $(NS)^+AeF_6^-$ $N\equiv S-F$	in SO_2 in SO_2 in benzene in $SO_2(NS^+F^-?)$	+91 -202 +115.5 -196		(l) (l) (m)
$\begin{array}{l} NSCl \\ [N(SCl)_2]^+AeF_6^- \end{array}$	in SO ₂ (NS ⁺ Cl ⁻ ?) in SO ₂	- 323 - 19		(1) (1) (1)
(HCSNSCH) ⁺ AeF ₆ ⁻	in SO ₂	+5		(1)

353

$(H_2 \overline{CSNSCH_2})^+ AeF_6^-$	in SO ₂	- 134		(1)
$(H_2CSNSCH_2)^+AeF_6^-$ CH_2 — CH_2	in SO ₂	+ 298		(1)
$\begin{array}{c} N-X \\ S+S \\ N \end{array}$ [AeF ₆]	in SO ₂			(1)
X		SNS	XNS	
SF		+ 27	+ 173	
SCI		+ 40	+ 176	
CMe		+ 27	- 126	
CNMe ₂		+17	+ 101	
PPN+ S ₃ N-	in MeCN	-235 (S ₃ 1	N)	(n)
PPN+ S ₄ N-	in MeCN	$-106 (S_4)$	N)	(n)
$(Me_2N)_3S^+NSO^-$	in MeCN	-139 (NS	SO)	(n)
		+ 325 (NI	\mathbf{Me}_2)	(n)
K(18-crown-6) ⁺ NSO ⁻	in tetrahydrofuran	- 134		(n)
$(Me_2N)_3S^+SSNSO^-$	in MeCN	-45 (SS)		(n)
$PPN^{+} S_{3}N_{3}O_{2}^{-}$	in CH ₂ Cl ₂	+165, +2		(n)
$PPN^+ S_3N_3O^-$	in CH ₂ Cl ₂	+155, +9	92	(n)
$PPN^+S_3N_3^-$	in CHCl ₃	+232		(n)
$Ph_4P^+S_3N_3^-$	in CHCl ₃	+ 234		(n)
$PPN^{+} S_{4}N_{5}O^{-}$	in CH ₂ Cl ₂		251, +225	(n)
S ₇ NH	in THF (-80°C)	+ 364		(o)
0.37-	in liquid NH ₃	+ 364		(o)
$S_7 N^-$	in THF (+25°C)	+ 327		(o)
G NI-	in liquid NH ₃	+ 324		(o)
$S_4 N^-$	in THF (+25°C)	106 107		(o)
c M-	in liquid NH ₃ in liquid NH ₃	- 107 - 231		(o) (o)
S_3N^-	iii iiquiu ivri3	- 231		(0)

Table 25. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
S ₃ N ₃ -	in liquid NH ₃	+ 230	(o)
HN S N S	in liquid NH ₃	+ 148 (doublet)	(o)
HN 3		−9 (singlet)	(o)
$S_4N_4H_4$	in liquid NH ₃	+ 321.5	(o)

- (a) Data from ref. 1177, 21.692 MHz 14 N spectra, field parallel to sample tube, referenced originally to aqueous ammonium chloride and reported vs liquid ammonia, taken at +380.2 ppm from neat nitromethane, conversion scheme IVd (Table 1).
- (b) Data from refs. 574 and 1178, 30.414 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to liquid ammonia, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (c) Data from ref. 1179, 40.5 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (d) Data from ref. 1046, 5.6 MHz ¹⁴N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (e) See footnote (a).
- (f) Data from ref. 1180, 40.5 MHz ¹⁵N spectra, other details as in footnote (b); originally, the molecule was labelled with ¹⁵N at 1,2-N and at 5-N, but internal rearrangement led to the label scrambling over 3,4-N.
- (g) Data from ref. 1181, 0.4–1.8 M solutions, 14.45 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (h) Data from ref. 1182, 28.915 MHz ¹⁴N spectra, other details as in footnote (g).
 - (i) Data from ref. 908, 99% ¹⁵N-labelling, 40.5 MHz ¹⁵N spectra, other details as in footnote (b).
- (j) Data from refs 152 and 227, 30.4 MHz ¹⁵N INEPT spectra, and 200 MHz ¹H{¹⁵N} 2-D inverse COSY, field parallel to sample tube, referenced to nitromethane containing 10% benzene-d₆, ca. +0.4 ppm from neat nitromethane (estimated from data in Table 26), conversion scheme IIb (Table 1).
 - (k) See footnote (h).
 - (l) See footnote (g).
- (m) Data from ref. 1183, ¹⁴N spectrum, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects, spectrometer not reported.
 - (n) Data from ref. 1184, 28.915 MHz ¹⁴N spectra, other details as in footnote (g).
- (o) Data from refs. 809 and 810, 36.14 MHz ¹⁴N spectra and 50.7 MHz ¹⁵N spectra, field parallel to sample tube referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.

NITROGEN NMR SPECTROSCOPY

Table 26. Nitrogen shieldings in some nitro compounds, nitramines, nitrates and related structures

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
MeNO ₂	0.05 м in cyclohexane	+8.50	(a)
(nitromethane)	0.3 m in CCl ₄	+ 7.10	(b)
·	0.3 м in benzene	+4.38	(b)
	0.3 m in Et ₂ O	+ 3.91	(b)
	0.3 м in CHCl ₃	+ 3.79	(b)
	$0.3 \mathrm{M}$ in $\mathrm{CH_2Cl_2}$	+ 3.21	(b)
	0.3 м in EtOH	+ 2.70	(b)
	0.3 м in MeOH	+ 2.01	(b)
	0.3 м in dioxane	+ 1.82	(b)
	0.3 m in CF ₃ CH ₂ OH	+0.88	(a)
	0.3 m in acetone	+0.77	(b)
	0.3 м in MeCN	+0.20	(b)
	neat liquid	0.00	(c)
	0.08 м in H ₂ O	-1.98	(b)
	0.3 m in DMSO	-2.01	(b)
¹³ CH ₃ NO ₂	in nitromethane	-0.019	(B)
CD_3NO_2	in nitromethane	-0.038	(B)
MeONO ₂	0.2 м in n-hexane	+42.21	(d)
(methyl nitrate)	0.2 м in CCl₄	+41.94	(d)
,	0.2 м in Et ₂ O	+40.46	(d)
	0.2 м in benzene	+40.43	(d)
	0.2 м in CHCl ₃	+ 39.99	(d)
	0.2 м in CH ₂ Cl ₂	+ 39.19	(d)
	0.2 м in dioxane	+ 38.95	(d)
	0.2 m in acetone	+ 38.41	(d)
	0.2 м in MeOH	+38.39	(d)
	0.2 м in CF ₃ CH ₂ OH	+ 38.08	(d)

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
	0.2 м in glycol	+ 38.06	(d)
	0.2 м in DMSO	+ 37.14	(d)
EtNO ₂	various	-11.4 to -4.1	(b)
Pr ⁿ NO ₂	various	-10.1 to -3.8	(b)
Pr ⁱ NO ₂	various	-19.5 to -14.7	(b)
Bu ^t NO ₂	various	-28.2 to -21.8	(b)
$CH_2(NO_2)_2$	10% in CHCl ₃	+ 25.1	(e)
CH(NO ₂) ₃	10% in CHCl ₃	+ 38.2	(e)
$C(NO_2)_4$	neat liquid	+ 46.6	(b)
	10% in CHCl ₃	+48.1	(e)
$CF(NO_2)_3$	10% in CHCl ₃	+40.2	(e)
$(NO_2)_3C-C(NO_2)_3$	10% in CHCl ₃	+47.0	(e)
$(NO_2)_2$ CF—CF $(NO_2)_2$	10% in CHCl ₃	+ 37.8	(e)
$(NO_2)_2O_2CCI$ — $CCI(NO_2)_2$	10% in CHCl ₃	+ 32.2	(e)
$MeCF(NO_2)_2$	10% in CHCl ₃	+ 17.0	(e)
hexanitrobenzene	10% in CH ₂ Cl ₂	+ 39.9	(e)
pentanitrobenzene	10% in CH ₂ Cl ₂	+35.5, $+33.0$, $+32.8$	(e)
pentanitrotoluene	10% in CH ₂ Cl ₂	+35.3, $+34.2$, $+37.5$	(e)
3-NH ₂ -4-NO ₂ -furazan	10% in acetone	+32.4 (NO2)	(e)
3-(p-chlorophenyl)-			
4-NO ₂ -furazan	10% in CHCl ₃	+ 34.3	(e)
3-Me-4-NO ₂ -furoxan	in DMSO	$+31.8 (NO_2)$	(D)
3-NO ₂ -4-Me-furoxan	in DMSO	+35.1 (NO2)	(D)
3,5-dinitro-isoxazole	10% in CHCl ₃	+34.7, +39.2	(e)
3-C(NO ₂) ₂ Me-4-nitro-	-		
5-Me-isoxazole	in DMSO	$+25.1 (4-NO_2)$	(D)
		+15.9 (other)	(D)

4,4'-dinitro-3,3'-bis-furazan	10% in CHCl ₃	+ 39.4	(e)
same, ¹³ C-labelled at 4,4'	10% in CHCl ₃	+ 39.6	(e)
4,4'-dinitro-			
5,5'-bis-isoxazole	in DMSO	+24.1 (NO2)	(D)
4,4'-dinitro-3,3'-dimethyl-			
5,5'-bis-isoxazole	in DMSO	$+26.7 (NO_2)$	(D)
N-Me-tetranitropyrrole	10% in CH ₂ Cl ₂	+39.3 (NO2)	(e)
PhNO ₂	various	+9.5 to +12.2	(b)
(nitrobenzene)	solvents		(-)
O_2N NO_2 NO_2	10–20% in DMSO		(f)
R		N-2.6 N-4	

R	N-2,6	N-4
H	+ 18.7	+ 18.7
Me	+ 12.7	+18.3
OH	+11.8	+ 14.6
OMe	+ 18.0	+ 18.9
OPh	+ 20.2	+ 19.6
<i>p</i> -nitrophenoxy	+21.3	+ 19.8
p-bromophenoxy	+20.4	+ 19.4
p-Bu'-phenoxy	+ 19.8	+ 19.2
NH ₂	+14.4	+16.8
NHMe	+13.2	+16.7
NMe ₂	+ 12.6	+17.7
NH(cyclohexyl)	+ 12.8	+17.4
NHPh	+15.7	+17.7
NH(p-CN-phenyl)	+ 15.8	+17.9

Table 26. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
NH(p-OMe-phenyl) COOH COOMe COCI Cl ₂ SO ₃		+ 15.3 + 17.4 + 18.3 + 20.0 + 20.4 + 20.8 + 18.6 + 20.1 + 19.2 + 20.4 + 12.2 + 18.9	
NO ₂	in CF₃SO₃H, -20°C	+ 5.1	(g)
HO TOH	in CF ₃ SO ₃ H, -20°C	+ 33.8	(g)
O_2N \nearrow R	in MeOH		(h)

R			(NO ₂)	
NMe ₂			+ 8.8	
NH ₂			+8.2	
OEt			+ 9.3	
Me			+ 9.7	
Et			+9.8	
H			+9.8	
Cl			+ 10.6	
COMe			+ 10.5	
CF ₃			+11.3	
CN			+ 11.7	
R^{1}	R²		(NO_2)	
Н	Н	in DMSO	•	
11	11	in CHCl ₃	+ 16.7 + 19.3	
H	OMe	in CHCl ₃	+ 19.3 + 18.8	
SMe	H	in CHCl ₃	+ 19.2	
SO ₂ Me	н	in DMSO	+ 19.2 + 18.1	
		550	170.7	
O ₂ N—CH ₂ —	-CH ₂ СООН	in H ₂ O(?)		(j)
16 O 16 O				

Table 26. —cont.

Compou	nd	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
18 O N	0		-3.22	
18 O N	0		-3.16	
Ph C+NC	02	in FSO_3H/SO_2ClF - $78^{\circ}C$	+ 18.3	(k)
O ₂ N C—C	CHNHR ¹			(1)
\mathbb{R}^1	R ²		(NO ₂)	
Me	p-tolyl	in CF ₃ COOH	+ 38.9 (Z)	
Н	Me	in DMSO in CF₃COOH in DMSO	-0.8 (E) +34.0 +0.2 (E)	
Me	4-Me-2-pyridyl	in CF ₃ COOH in DMSO	+4.1 (E), +4.3 (Z) -2.2 (E), -17.2 (Z)	
Ме	2-pyrimidyl	in CF ₃ COOH in DMSO	+4.1, +3.6 (E, Z) -2.5 (E)	

N-Me-2-NO-4-NO ₂ -aniline	in DMSO	+ 12.0 (NO ₂)	(m)
$3,3'-(NO_2)_2-4,4'-(NHMe)_2-$ azoxybenzene	in DMSO	+9.8, +11.4 (NO2)	(m)
N-Me-2-NO-4,6-dinitroaniline	in CDCl ₃	$+16.3 (4-NO_2)$	(n)
н н		+ 14.5 (6-NO ₂)	
O_2N H C H NO_2		0.5 (0.6 N)	(-)
[NMe ₄] ⁺	in DMSO	+ 8.5 (2,6-N) + 17.7 (4-N)	(o)
$oldsymbol{NO}_2$		11 (11.4)	
0			
CI	in CDCl ₃	25	(=)
(L)	III CDCI3	-35	(p)
Me NO ₂			
H ₂ N H			
HŅ CŅ	in liquid NH ₃		(q)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	R = H	$+31.2 (NO_2)$	_

R = OMe

+31.2 (NO₂) +31.2 (NO₂)

		Nitrogen shielding (ppm) referred to neat	
Compound	Solution or state	nitromethane	Notes
Me Me			
Me C NO ₂	in 70–80% H ₂ SO ₄	$-7 \text{ to } +3 \text{ (NO}_2)$	(r)
(4) CH ₂ ONO ₂ O ₂ NO / O	in acetone-d ₆	+45.0 (2-N)	(s)
O ₂ NO		+44.9 (3-N)	(s)
(3) ONO ₂ OMe		+ 45.6 (4-N) + 39.6 (6-N)	(s) (s)
(methyl-β-D-glucopyranoside tetr	anitrate)	1 37.0 (0-11)	(3)
(6B)	in acetone-d ₆	+ 50.8 (1A-N)	(e)
O_2NO_2 I_2ONO_2		+ 30.8 (1A-N) + 47.4 (2A-N)	(s) (s)
O_2NO_2 (6A)		+45.0 (3A-N)	(s)
$\begin{array}{cccc} \text{(3B)} & \text{ONO}_2 & \text{CH}_2\text{ON} \\ \text{ONO}_2 & \text{ONO}_2 & \text{ONO}_2 \end{array}$	NO ₂	+40.6 (6A-N)	(s)
$(2B)$ O_2NO	(IA)	+ 46.5 (2B-N)	(s)
(3A) ONO	NO ₂	+45.8 (3B-N)	(s)
(2A)		+46.5 (4B-N)	(s)
		+40.1 (6B-N)	(s)
(β-cellobiose octanitrate)			
HONO ₂	neat liquid	+ 42.5	(t)

(u) (u) (u)

(u) (u) (u) (v)

(v) (w) (t) (x)

HNO ₃ /H ₂ O	$3 \text{ m in } H_2O$ $5 \text{ m in } H_2O$ $10 \text{ m in } H_2O$ (see also Table 2)	+ 5 + 18 + 38
HNO ₃ /H ₂ SO ₄ /H ₂ O	in $3 \text{ M H}_2\text{SO}_4$ in $14 \text{ M H}_2\text{SO}_4$ in $24 \text{ M H}_2\text{SO}_4$	+ 5.5 + 23 + 43
HNO ₃ /Bu ₃ PO ₄	0.5–3.5 м in Bu ₃ PO ₄ 0.1–2 м in	+ 26 to + 37
N_2O_5/HNO_3	Bu ₃ PO ₄ /CCl ₄ (1:1)	+ 32 to + 38
KNO ₃ , NaNO ₃	liquid 0.3 м in H₂O	+46.5 to +49.7 +3.5
$(Bu_4N^+)_{x-3}L(NO_3)_x$	in CH ₂ Cl ₂	T 3.3
<u>L</u>		NO ₃
La 6		+10
Lu 5		+10
Ce 6		+33
5	(in acetone, Pr ₄ N ⁺)	+40
Pr 6		+85
5	(in acetone, Pr_4N^+)	+ 100
Nd 6		+ 105
5	(in acetone, Pr ₄ N ⁺)	+ 126
Sm 5		+25
Eu 5		- 162
Tb 5		-378
Dy 5		-267
Ho 5		-130 50
Er 5		-50
Tm 5 Yb 5		-46
1U)		-2

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
$UO_2(NO_3)_2 \cdot 2TBP$	in DEHPA + TBP + benzene	+8.3 to +9.5	(y)
$UO_2(NO_3)A \cdot TBP$	in DEHPA + TBP + hexane	+10.3 to $+10.8$	(y)
$TBP(HNO_3) \cdot xA$	in DEHPA + TBP + benzene	+31.8 to $+36.8$	(y)
[(H2O)2Lu(NO3)2]+	in H ₂ O-acetone-Freon-12 at −115°C	+ 3.9	(C)
[(H ₂ O) ₄ Lu(NO ₃)] ⁺	in H ₂ O-acetone-Freon-12 at -115°C	+ 4.4	(C)
Sn(NO ₃) ₄	in MeCN in CF ₃ COOH in (CF ₃ CO) ₂ O	+ 28 + 55 + 82	(E) (E) (E)
$ \begin{array}{c c} ON & NO_2 \\ (1) & (3) \end{array} $	in DMSO	+ 27.8 (NO ₂) + 198.3 (3-N, <i>anti</i>) + 196.6 (3-N, <i>syn</i>)	(z) (z) (z)
O ₂ N NO ₂	in DMSO	+ 28.7 (NO ₂) + 200.6 (N)	(z) (z)
$ \begin{array}{cccc} O_2 N & N & NO_2 \\ (1) & & & & \\ & & & & \\ & & & & \\ Me \end{array} $	in DMSO	+ 29.3 (1-NO ₂) + 30.3 (3-NO ₂) + 201.4 (1-N) + 191.6 (3-N)	(z) (z) (z) (z)
O ₂ N NO ₂	in DMSO	+ 31.2 (NO ₂) + 205.3 (N)	(z) (z)

O_2N_N N^{O_2}	in DMSO	$+31.0 (1-NO_2)$	(z)
$(1) \stackrel{\mathbf{N}}{\downarrow} \stackrel{\mathbf{N}}{\downarrow} (3)$		$+31.9 (3-NO_2)$	(z)
Me		+206.8(1-N)	(z)
ME		+ 195.5 (3-N)	(z)
$O_2N-N-CH_2-N-NO_2$	in DMSO	$+31.0 \text{ (NO}_2)$	(z)
(CH ₂) ₄		+ 197.3 (N)	(z)
N-nitroguanidine	solid state	$+ 12 (NO_2)$	(A)
C	in DMSO	$+10 (NO_2)$	(A)
	in dimethylformamide	+11 (NO2)	(A)

- (a) Data from ref. 81, high-precision ¹⁴N spectra, 36.14 MHz, referenced to neat nitromethane, field parallel to sample tube, lineshape fitting, corrected for bulk susceptibility effects.
 - (b) See ref. 31; ref. 5, p. 223; ref. 4, p. 385; and references therein.
 - (c) Arbitrary standard, see also ref. 5, pp. 17-30.
- (d) Data from ref. 88, high-precision ¹⁴N spectra, 4.33 MHz, references to neat nitromethane, + 35°C ± 0.3, lineshape fitting, differential saturation CW technique, concentric spherical sample/reference containers in order to eliminate bulk susceptibility effects.
- (e) Data from ref. 859 and 1185, 6.5 MHz ¹⁴N spectra, field perpendicular to sample tube, referenced originally to liquid 10% nitromethane in CHCl₁, +3.8 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (f) Data from refs 360 and 1186, ¹⁵N spectra, 10.095 MHz, field perpendicular to sample tube, Cr(acac)₃ added as a relaxation reagent, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (g) Data from ref. 836, ¹⁵N spectra, 99% ¹⁵N label, 10.095 MHz, field perpendicular to sample tube, referenced originally to liquid NH₃, +381.9 ppm from nitromethane (Table 2), conversion scheme IIa (Table 1).
- (h) Data from ref. 273, ¹H{¹⁵N} INDOR spectra, ¹⁵N-labelled NO₂, 80 MHz, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility.
- (i) Data from ref. 162, ¹⁵N spectra, 30.4 MHz, field parallel to sample tube, referenced originally to MeNO₂ in MeOH (+1.97 ppm from neat nitromethane) and recalculated to the latter reference, uncorrected for bulk susceptibility.
- (j) Data from ref. 164, ¹⁵N spectra, ¹⁵N and ¹⁸O labels, DEPT sequence, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility, solvent not specified.
- (k) Data from ref. 1187, ¹⁵N spectra, 5% ¹⁵N label, 8.1 MHz, field perpendicular to sample tube, referenced originally to liquid NH₃, conversion to neat nitromethane as in footnote (g).
- (1) Data from ref. 766, ¹⁵N DEPT spectra, 40.5 MHz, field parallel to sample tube, referred to nitromethane with 10% benzene-d₆, ca. +0.8 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
 - (m) Data from ref. 1062, 30.405 MHz ¹⁵N spectra, other details as in footnote (f).
 - (n) Data from ref. 360, details as in footnote (f).

- (o) Data from ref. 862, ¹⁵N spectrum, 10.095.MHz, referred to neat nitromethane, uncorrected for bulk susceptibility.
- (p) Data from ref. 1188, ¹⁵N spectrum, spectrometer not specified, referenced to 8 m HNO₃, ca. +14.5 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1).
 - (q) Data from ref. 162, see footnote (i).
- (r) Data from refs 484 and 486, 15 N CINDP spectra, 9.1 MHz, referenced to internal PhNMe $_2^+$, ca. + 327 ppm from neat nitromethane, as can be reckoned from the position of the resonance of HONO $_2$, which should appear at ca. + 43 ppm from nitromethane under the experimental conditions involved (Table 2).
- (s) Data from ref. 1189, 30 and 20 MHz ¹⁵N{¹H} COSY spectra, field parallel to sample tube, referenced originally to 1 M NH₄Cl in 10 M HCl, + 349.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (t) See Table 2.
- (u) Data from ref. 1190, 7.2 MHz¹⁴N spectra, field perpendicular to sample tube, referenced originally to aqueous KNO₃, +3.5 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (v) Data from ref. 742, 6.5 MHz ¹⁴N spectra, field perpendicular to sample tube referenced originally to aqueous KNO₃, +3.5 ppm from nitromethane (Table 2), conversion scheme IIa (Table 1).
- (w) Data from ref. 743, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility.
- (x) Data from ref. 491, 5.74 MHz ¹⁴N spectra, referenced originally to internal nitrobenzene (10% + 10% TMS in CH₂Cl₂), ca. + 10 ppm from neat nitromethane, low-precision measurements, ± 2 ppm.
- (y) Data from refs 1191 and 1192, 9.1 MHz ¹⁵N spectra, field perpendicular to sample tube, ¹⁵N-labelled NO₃⁻, referenced originally to aqueous NaNO₃, +3.5 ppm from nitromethane, conversion scheme IIa (Table 1); see also ref. 1193, 6.5 MHz ¹⁴N spectrum, referenced to aqueous KNO₃, conversion as above. The abbreviations employed are DEHPA = HA = bis(2-ethylhexyl) phosphoric acid, A = its anion, TBP = tributyl phosphate.
- (z) Data from ref. 373, 20.3 MHz ¹⁵N spectra, referenced originally to internal nitromethane, but reported relative to liquid NH₃ (with an assumed conversion constant of 380.2 ppm); this is erroneous, since the latter value is referred to neat nitromethane, and contains bulk susceptibility effects for a field which is perpendicular to sample tube; the actual value of the nitrogen shielding for nitromethane in DMSO (-2.0 ppm from neat nitromethane, this table) was used here for conversion.
- (A) Data from ref. 414, 20.272 MHz¹⁵N CPMAS and solution spectra, referenced to NO₃ in solid and aqueous NH₄NO₃, +5.0 and +4.0 ppm, respectively, from neat nitromethane (Table 2); conversion scheme IIb (Table 1).
 - (B) Data from ref. 495, ¹⁵N-labelled nitromethane isotopomers, 30.4 MHz ¹⁵N spectra referenced to internal ¹²CH₃ ¹⁵NO₂.
- (C) Data from ref. 1194, ¹⁵N-labelled nitrate, 40.561 MHz ¹⁵N spectra, referenced originally to internal NaNO₃, 3.5 ppm from neat nitromethane (Table 2).
- (D) Data from ref. 844, 30.4 MHz ¹⁵N spectra and 21.7 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (E) Data from ref. 1195, 7.2 MHz¹⁴N spectra, field perpendicular to sample tube, referenced originally to NO₃⁻ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).

Table 27. Nitrogen shieldings in diazo compounds, diazonium salts and diazoates

Compound	Solu	ition or state	Nitrogen shield referred to nea		Notes
Diazo structures			(=N=)	(=N ⁻)	
$R_2C=N^+=N^-$ $H_2C=N^+=N^-$ $MeCH=N^+=N$ $EtCH=N^+=N$ MeOOC > C=N	i - in C - in C	D ₃ OD D ₃ OD D ₃ OD	+ 92.6 + 76.5 + 78.1 + 113.6	5 - 60 to + 66 - 14.0 - 45.4 - 47.0 0.0	(a) (b) (b) (b) (c)
Diazonium salts			(− N=)	(≡N)	
$R-\stackrel{+}{N}\equiv N X^-$	vari	ous	+82 to +191	1 + 32 to + 166	(d)
		cetone cetone +	+ 149.7	+ 66.9	(e)
	[18-	crown-6]	+ 155.8	+63.4	(e)
$R - \left(\begin{array}{c} \\ \\ \end{array} \right) - \stackrel{\uparrow}{N} \equiv$ R	N BF ₄ 0.05	M in MeCN (if not stated	otherwise) (—N≡)	(≡N)	
NMe ₂ OMe			+ 133.3 + 145.9	+ 33.1 + 57.2	(f) (f)(g)
Me H	(0.5 m in 0.1	м <i>HCl</i>)	- + 147.8 + 148.2	+57.9 +63.2 +65.2	(g) (f)
F Cl			+ 149.9 + 149.7	+63.3 +62.7	(f) (f) (f)
Br I CN			+ 149.2 + 148.5 + 151.3	+62.2 +61.6 +64.9	(f) (f) (f)
NO ₂			+ 151.4	+ 64.3 + 65.2	(f) (g)
NMe ₃ ⁺ Cl ¹ SO ₃ H	(+1 m 18-ci (0.1 m 0.05 m (in MeCN/1 (0.11 m in 0.	$M_2O, 4:1)$	+ 151.7	+ 62.9 + 64.6 + 65.4 + 66.9	(g) (g) (f) (g)
MeO ₊ N≡N Ph-,N≡N F-N≡N MeNH-N≡N	in SO_2F_2/M in SO_2F_2/M	eF, -100°C leF, -100°C leF, -100°C	+ 158.5 + 156.4 + 166.1	+ 293.4 + 63.4 + 191.2 + 166.3	(h) (h) (h) (h)
Diazotates (diaz		, 100 C	(—N =)	(=N-O)	(**)
R—N=N—O ⁻ (syn. anti)			-6 to +18	· · · · · · · · · · · · · · · · · · ·	(i)
Me N=N OH	in CD ₃ OD		+ 33.8	- 187.2	(j)

Table 27. —cont.

Compound	Solution or state		Nitrogen shielding (ppm) referred to neat nitromethane	
Me N=N O-K+	in CD ₃ OD	+ 18.8	-182.9	(j)
	in DMSO	+9.5	- 173.5	(j)
Ph_N=N_O-K	in DMSO	+ 10.0	158.7	(j)
Ph N=N OH	in DMSO	+71.4	-113.2	(j)
Ph $N=N$ $O^{-}K^{+}$	in DMSO	+ 30.1	119.9	(j)

- (a) See ref. 5, p. 560, and references therein.
- (b) Data from ref. 837, see Table 29, footnote (s).
- (c) Data from ref. 1074, 25.34 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac)₃ added as a relaxation reagent.
 - (d) See ref. 5, p. 561, and references therein.
- (e) Data from ref. 900, 36.4 MHz and 18.2 MHz¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (f) Data from refs 75 and 482, ¹⁵N doubly labelled benzenediazonium ions, 9.12 MHz ¹⁵N CINDP spectra, field perpendicular to sample tube; 0.05 M or 0.1 M pyrene was present in the solutions, irradiated with a high-pressure mercury lamp; enhanced absorption was observed for the ¹⁵N signals of the diazonium ions, while emission signals of N₂ appeared in the spectra; the latter signals were calibrated (+70.3 ppm) against neat nitromethane, uncorrected for bulk susceptibility effects.
- (g) Data from ref. 1196, ¹⁵N singly labelled ions, ¹⁵N spectra, referenced to neat nitromethane, uncorrected for bulk susceptibility effects, spectrometer not reported, field was probably parallel to sample tube.
- (h) Data from ref. 896, ¹⁵N-labelled ions, 8.1 MHz ¹⁵N spectra, field perpendicular to sample tube, reference not given, probably liquid ammonia at +380.2 ppm from neat nitromethane, uncorrected for bulk susceptibility effects.
 - (i) See Table 29, footnote (s) therein; see also ref. 5, p. 561, and references therein.
 - (j) See footnote (b).

Table 28. Nitrogen shieldings in azo, azoxy and azodioxy compounds, diazenes, triazenes, and tetrazenes

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Azo structures			
$ \begin{array}{ccc} R & & & & & & & & & & & & \\ N = N & & & & & & & & & & & & \\ trans & & & & & & & & & & & \\ \end{array} $	various (R = aryl)	-165 to -80	(a)
Protonated forms of azoarenes Azoarenes in equilibria with	in FSO ₃ H	-76 to -6	(a)
hydrazone tautomers	various	see Table 9	
But N=N But	0.5 m in CHCl ₃ 0.3 m in MeOH 0.2 m in acetone 0.2 m in n-hexane neat liquid 0.3 m in CCl ₄ 1.0 m in CF ₃ CH ₂ OH	- 151.33 - 151.60 - 151.73 - 152.07 - 152.65 - 152.91 - 159.0	(b) (b) (b) (b) (b)
Ph_N=N_Ph	various solvents solid, +21°C	- 130 to - 128 + 127, - 126 isotropic - 650, - 621 (σ_{11}) - 7, - 16 (σ_{22}) + 275, + 259 (σ_{33})	(a) (c) (c) (c) (c)
Ph N=N Ph	various solvents	-151 to -146	(a)
Ph N = N	solid		(d)

Table 28. —cont.

Compound	Solution or state		Nitrogen shielding (ppm) referred to neat nitromethane	
R				
4-OH	+32°C	-95.7, -68.7 -114.4, -80.5	(N-α) (N-β)	
2-OH-4-Bu ^t	+33°C	-65.3 -129.9	(N-α) (N-β)	
	+ 50°C	-65.6 -129.9	(N-α) (N-β)	
4-NMe ₂	+29°C	-117.0	$(N-\beta)$	
	in CDCl ₃	154.7		(e)
$ \begin{array}{c} NO_2 \\ \downarrow \\ (\alpha) \\ N \\ (\beta) \end{array} $ hydrazone tautomer	in DMSO + 27°C	44.1 118.1	(N-α) (N-β)	(f)
H ₂ N SO ₃	+87°C	-48.2 -121.4	$(N-\alpha)$ $(N-\beta)$	
OH OH	(>95% azo form)			

(h)

$$\begin{array}{c|c} F & OH \\ N=N & OH \\ (\alpha) & & \\ R^1 & & \\ R^2 & & \\ R^2 & & \\ R^3 & & \\ (\alpha) & & \\ \end{array}$$

NHCOMe

azo structures in tautomeric equilibria with hydrazones

OH

OH

ОН

Me

Н

Me

Me

Br

Н

Н

Me

in CDCl₃
$$-63.9$$
 $(N-\alpha)$ (g) -122.6 $(N-\beta)$ (g) (ca. 100% azo form)

in $CDCl_3$

N-α	Ν-β	NEt ₂
-93.1	- 116.6	+ 295.9
 90.6	-115.9	+295.2
-93.0	-112.3	+296.8
-96.0	-109.6	+297.7
-127.6	-54.2	+282.7
(+13.9; +	16.9, NO ₂)	
	-103.6	+289.3
(+253.4,	NHCOMe)	
-51.4	– 114.6	+296.1
(+251.5,	NHCOMe)	
-59.3	-112.3	+287.8
(+251.9, 1)	NHCOMe)	
+23.7	-81.3	+285.4
+11.7	-84.2	+286.9
?	-71.8	+286.0

see Table 9

Table 28. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	
C=O N-C, H C-N Ph N-C, H R C=O	in CDCl ₃		(i)
R		(=N-Co) (=N) (NHPh)	
H Cl		? -47.9 +249.1 +113.7 -46.3 +247.8	
Ph N Li	in CDCl ₃	−8.8 (=N−Li)	(j)
Cyanodiazo structures R (β)	in CDCl ₃		

- (k) - (k)
(A)
+105.3 (k)
+123.1 (k)
+100.9
+119.6
- (k)
- (k)
+106.0 (k)
+125.4 (k)

see Tables 27 and 29

Hydroxy-azo structures R-N=N-OH

and corresponding anions

Azoxy structures				
Ph N=N	various	+57 to +64	(NO)	(m)
N=N_Ph		+34 to +52	(=N)	(m)
O, Lii	in SO_2 , $-80^{\circ}C$	+ 67	(NO)	(n)
		+ 50	(=N)	(n)
(monoprotonated)	in FSO ₃ H/SO ₂	+ 53	(NO)	(n)
•		+ 53	(=N-)	(n)
(diprotonated)	in SbF ₅ /FSO ₃ H/SO ₂	+ 209	(NO)	(n)
· -		+ 169	(=N-)	(n)
C_6F_5 $N=N-C_6F_5$				
N=N-C ₆ F ₆	in SO_2 , -80° C	+ 76	(NO)	(n)
0		+63	(=N-)	(n)
(monoprotonated)	in FSO ₃ H/SO ₂	+65	(NO)	(n)
•	- · · ·	+65	(=N-)	(n)
(diprotonated)	in SbF ₅ /FSO ₃ H/SO ₂	+ 176	(NO)	(n)
,	3, 3, 2	+ 165	(=N-)	(n)

Table 28. —cont.

Compound	pound Solution or state		Nitrogen shielding (ppm) referred to neat nitromethane	
N=N Ph	in DMSO			(0)
R				
Н		+ 57.3	(NO)	
OMe		+ 52.1 + 64.0	(N) (NO)	
Me		+ 54.5 + 59.7	(N) (NO)	
Cl		+ 52.8 + 56.5	(N) (NO)	
CF ₃		+ 56.3 + 52.3	(N) (NO)	
СОМе		+ 54.5 + 53.2	(N) (NO)	
CN		+ 53.2 + 51.8	(N) (NO)	
NO_2		+ 55.0 + 50.8 + 55.6	(N) (NO) (N)	
$N=N$ R^2			` '	
$R^1 = R^2 = 2,4-F_2$ -phenyl	in SO ₂ (?)	+ 65.0	(NO)	(p)

(r)

Azodioxy structures (nitroso dimers)	in n-hevane			(-)
R^1 =2-NHMe-5-NO ₂ -phenyl R^2 =2-NH ₂ -5-NO ₂ -phenyl	in DMSO	+ 60.1 + 56.5	(NO) (=N)	(q) (q)
$R^1 = R^2 = C_6 F_5$	in SO ₂ (?)	+ 53.9 + 76.0 + 62.7	(=N) (NO) (=N)	(p) (p) (p)
$R^1 = R^2 = 2,3,5,6-F_4$ -phenyl	in SO ₂ (?)	+ 55.9 + 66.0	(=N-) (NO)	(p) (p)

in n-nexane (r) 0.5 м +65.52.0 M +64.7in CCl₄ (r) 0.5 м +67.62.0 м +64.1in MeOH (r) 0.5 м +63.41.5 м +61.7in DMSO, 1.0 M +54.7

Diazene structure

$$R_2N^+=N^-$$
 in solution $ca. + 60 (N^+)$ (s) $ca. -530 (N^-)$ (s)

R-N=

=N-

NR₂

Triazene structure (amino-azo type)

R-N=N-NR₂ various
$$-29 \text{ to } -72 \text{ to } +169 \text{ to } \\ \text{in CDCl}_3 \\ 25\% \text{ v/w}$$
 (t)

Table 28. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane			Notes
R					
Н	- (60%w/v)*	+ 5.2	-61.5	+ 205.8	
	(20//.)	+6.7	-60.2	+ 207.4 + 205.4	
4.004-	(3%w/v)	+ 5.7	-62.4		
4-OMe		+6.2	-55.6	+210.0	
4-Me		+6.0	-58.6	+ 208.7	
4-F		+9.3	- 59.7	+ 207.5	
4-Br	(30 / L) *	+11.0	-61.2	+ 205.6	
	$(3\%w/v)^*$	+9.7	-62.6	-	
3-Br		+11.5	-62.5	+ 204.2	
4-CF ₃		+ 13.0	-64.3	+ 203.4	
4-SO ₂ Me		+ 15.4	-66.5	+ 199.5	
3-NO ₂		+ 16.2	-64.5	+ 201.5	
4-NO ₂		+ 16.5	-67.8	+ 198.4	
	(3% w/v)	+ 17.1	- 67.9	-	
	(3%w/v)*	_	-68.3	-	
R	0.4 m in DMSO + Cr(acac) ₃				(u)
$N=N-NMe_2$	+ CI(acac) ₃				
R					
Н	-	+23.5	-71.2	+ 222.2	
4-OMe		+20.8	-68.4	+ 226.2	
4-Me		+21.7	-70.1	+224.3	
4-Cl		+ 29.0	-71.2	+ 219.8	
4-CONH ₂		+ 28.8	-72.6	+218.2	
 2		(+276.2,			

(u)

4-COOH		+ 30.4	-73.3	+215.7
4-COOMe		+31.4	-73.5	+214.9
4-COOEt		+31.3	-73.4	+214.9
4-CF		+32.4	-73.6	+215.2
4-SO ₂ NH ₂		+32.2	-73.3	+215.2
		(+282.0, s	ulphonamide)	
4-SO ₂ Me		+34.5	-74.2	+212.8
4-NO ₂		+37.3	-75.0	+208.6
		(+7.2, nit)	ro group)	
3-CONH ₂		+26.6	-71.8	+220.4
		(+275.0, a	ımide)	
3-COOH		+28.2	-71.8	+218.8
3-COOMe		+29.2	- 71.7	+218.8
$3,5-(CF_3)_2$		+40.0	-73.4	+211.3
3-F-4-COOH		+ 35.9	− 74.3	+212.0
2-COHN ₂		+43.9	-68.2	+212.9
		(+267.2, a)	ımide)	
2-CONH ₂	(fully deuteriated Me)	+44.3	-68.3	+ 212.4
		(+267.2, a	ımide)	
2-COOH		+68.6	-61.8	+205.4
2-F-4-COOH		+46.2	-73.4	+210.2
$\langle r \rangle$	0.4 : 73.400			
H_2NOC $N=N-N$	0.4 m in DMSO			
$\stackrel{\smile}{\mathbf{R}}^2$	+ Cr(acac) ₃			
R^1 R^2		7 2 27		
K K		K-N=	$=N-NR_2$	CONH ₂
Me Me		+ 28.8	-72.6 + 218	22 +2762
Me Et		+29.5	-71.5 + 205	
Me Pr			-71.3 + 20.5 -72.1 + 206	
Me i-Pr			-72.1 + 200 -70.8 + 196	
Me t-Bu		+31.5	-72.6 + 189	
		T 21.3	- 12.0 T 103	T 210.2

Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Me	(CH ₂) ₁₁		+29.7 -72.0 +207.1 +276.2	
Me	CH₂Ph		+25.4 -72.8 +207.0 +275.9	
Et	Et		+31.6 -70.0 +193.4 +276.3	
i-Pr	i-Pr		+33.7 -68.6 +178.0 +276.3	
Me	CH ₂ CH ₂ OH		+29.4 -72.8 +209.4 +276.1	
Me	CH ₂ CF ₃		+11.6 -75.2 +225.4 +275.5	
Me	СНЗОН		+20.2 -74.5 +195.3 +275.8	
Et	CH ₂ OH		+26.6 -71.2 +191.0 +276.0	
Me	COMe		-25.4 -73.9 +166.2 +274.7	
Me	ОМе		-2.2 -76.9 +150.7 +273.5	
Triazene str	ucture (imino-azo type)			
$R_2C=N-N$	N=N-R	various	-87 to -22 (C=N) -122 to -40 (-N=) +81 to +92 (=N-R)	(s) (s) (s)
Tetrazene st R ₂ N—N=N		in solution	ca35 (N=N) ca. +220 (NR ₂)	(s) (s)

⁽a) See ref. 5, pp. 563-569, and references therein.

⁽b) Data from ref. 31, 4.33 MHz high-precision ¹⁴N spectra, +35 ± 0.3°C, concentric spherical sample-reference containers in order to eliminate bulk susceptibility effects. Lorentzian lineshape fitting, neat nitromethane as reference.

⁽c) Data from ref. 332, ¹⁵N double label, 20.29 MHz ¹⁵N MAS and powder spectra, references to NH₄⁺ in aqueous NH₄NO₃, but reported vs liquid ammonia standard taken at +23.8 ppm from the standard employed; in recalculation according to scheme II (Table 1), we retrieved the experimental values and then used the shielding value of +359.6 ppm for the actual reference with respect to neat nitromethane (Table 2); there are two non-equivalent sites of the molecule within the crystal lattice.

⁽d) Data from ref. 412, 20.28 MHz¹⁵N CPMAS spectra, referenced to solid NH₄Cl, but reported vs neat nitromethane by using a conversion constant (+352.5 ppm) which pertains to aqueous NH₄Cl; this is erroneous, since the shielding for solid NH₄Cl is +341.0 ppm (uncorrected) with

respect to neat nitromethane (Table 2). We retrieved the experimental values and recalculated the latter using the proper constant. The 4-OH derivative shows two non-equivalent positions within the crystal lattice.

- (e) Data from ref. 1197, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (f) Data from ref. 722, ¹⁵N doubly labelled azo moiety, 10.095 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (g) Data from ref. 728, 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (h) Data from ref. 548, 40.55 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac), added as a relaxation reagent.
 - (i) Data from ref. 587, details as in footnote (f).
 - (j) Data from ref. 586, ¹⁵N-monolabelled sample, 20.3 MHz ¹⁵N spectrum, other details as in footnote (g).
- (k) Data from ref. 854, 20.28 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to liquid NH₃, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (1) Data from ref. 893, 9.1 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; originally reported vs liquid ammonia taken at +380.2 ppm from neat nitromethane.
 - (m) See ref. 5, p. 568, and references therein.
 - (n) Data from ref. 897, 30.414 MHz¹⁵N spectra, field parallel to sample tube, referencing as in footnote (k).
- (o) Data from ref. 1198, 36.5 MHz ¹⁵N INEPT spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (p) Data from ref. 574, details as in footnote (n); solvent not reported, but the experimental value for perfluoroazoxybenzene indicates that the solvent was the same as in footnote (n), i.e. liquid SO_2 at $-80^{\circ}C$.
- (q) Data from ref. 1062, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
- (r) Data from ref. 30, details as in footnote (b); the substance is a dimer of the corresponding nitroso compound, Bu'NO, in equilibrium with the latter, and both the components are visible in the nitrogen NMR spectra.
 - (s) See ref. 5, pp. 570-573, and references therein.
- (t) Data from ref. 853, 10.095 MHz¹⁵N spectra, field perpendicular to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; Cr(acac), added as a relaxation reagent, with exception of the cases marked with an asterisk (*); at concentrations of 3% w/v, ¹⁵N doubly and singly labelled samples were employed.
- (u) Data from ref. 806, 25.36 MHz 15 N spectra, referenced originally to *internal* nitromethane (0.25 M in DMSO solvent employed), -2.0 ppm from neat nitromethane (Table 26); the conversion does not involve bulk susceptibility effects, because of the internal standard used, but may be affected by interactions between nitromethane and the other solutes.

Table 29. Nitrogen shieldings in some nitroso compounds, nitrosamines, nitrites and related structures

Compound Solution	Nitrogen shielding (ppm) referred t or state neat nitromethane	Notes
Bu'-N=O in n-hexa		(a)
2.0 M	- 591.9	(ω)
2.0 M 1.5 M	- 591.9 - 590.8	
1.0 M	- 590.5 - 590.5	
0.5 m	- 590.5 - 590.5	
$\inf CCl_4$,	370.3	(a)
2.0 M	- 592.8	(4)
1.5 M	- 592.3	
1.0 M	- 591.8	
0.5 м	- 591.5	
in MeOH		(a)
1.5 M	- 595.2	(/
0.5 м	- 595.6	
in DMSC		(a)
Ph—N=O various	ca530	(b)
N-Me-2-nitroso-		` '
4,6-dinitroaniline in CDCl ₃	-485.0 (NO)	(c)
$Bu^{t}-O-N=O 0.5 \text{ m in}$		(d)
(100% trans) CHCl ₃	- 207.16	, ,
DMSO	- 207.12	
benzene		
Bu ^t OH	- 204.92	
CCl ₄	- 202.43	
n-hexar	ne - 201.77	
Et ₃ N	- 201.74	
Et_2O	- 201.63	
MeOH	-183.07	
CF ₃ CH	I ₂ OH - 181.44	
$Bu^{n} - O - N = O \qquad 0.5 \text{ m in}$	-	(d)
(cis, trans) DMSO	- 198.80	

	Et₂O CCl₄	190.62 189.76		
Me—O—N=O	in MeCN	- 184		(e)
$CI \longrightarrow CI$ $O-N=0$	solvent not reported	- 220.1		(f)
Bu'—S—N=O NaNO ₂ HONO Na ⁺ [Co(NO ₂) ₆] ⁻ cis-[Co(NO ₂) ₂ (en) ₂] ⁺ trans-[CoCl(NO ₂)(en) ₂] ⁺ cis-[CoCl(NO ₂)(en) ₂] ⁺ trans-[CoCl(NO ₂)(en) ₂] ⁺ Na ₃ [Rh(NO ₂) ₆] [Rh(NO ₂) _x (H ₂ O) _{6-x}] ^{(3-x)+} Na ₃ [Ir(NO ₂) ₄ Cl ₂] Na ₃ [Ir(NO ₂) ₆]	$0.75 \mathrm{M}$ in n-hexane $0.3 \mathrm{M}$ in $\mathrm{H}_2\mathrm{O}$ in $0.1 \mathrm{M}$ HCl in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in aqueous HCl in aqueous HCl in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$ in $\mathrm{H}_2\mathrm{O}$	- 452.4 - 227.6 - 180.5 - 91 - 83.9 - 93.9 - 69.9 - 67.4 - 88 - 44 - 50.8 - 52.4		(g) (h) (i) (j) (j) (j) (k) (k) (l)
$\left[ON-C < \frac{CN}{CN}\right]^{-} K^{+}$	10% in H ₂ O in H ₂ O 10% in MeOH 10% in EtOH in EtOH 5% in Pr ⁿ OH 4% in Pr ⁱ OH 3% in Bu ^t OH	CN +124 +130 +116 +105 +111 +94 (+73)?? (+73)??	NO - 171 - 195 - 188 - 201 - 195 - 116 - 379 - 411	(m) (n) (m) (m) (n) (m) (m) (m)

Table 29. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane		Notes
$\begin{bmatrix} NC \\ ON \end{bmatrix} C - C \begin{cases} O \\ NH_2 \end{bmatrix} K^{+}$	in H ₂ O	+88	-210	(n)
$\begin{bmatrix} NC \\ ON \end{bmatrix} C - C \begin{cases} O \\ NH_2 \end{cases} \cdot py_2 \end{bmatrix} K^*$	in pyridine	?	-435	(n)
FNC s ∃-	in H ₂ O	+85	- 225	(o)
$NC > C - C \stackrel{S}{\searrow} K^{+}$	in acetone	+130	– 125	(o)
LON MI2		N	NO	
$Me_2N-N=O$	in acetone-d ₆	+ 148.7	-155.2	(p)
	in CDCl ₃	+ 149.7	-154.9	(e)
$(CH_2)_n$ $N-N=0$				
$\overline{n=2}$	in Et ₂ O	+ 180.6	-280.5	(p)
n = 3	in acetone-d ₆	+ 149.9	-160.1	(p)
n=4	in CDCl ₃	+ 123.8	-154.0	(p)
	•	+ 123.7	-154.9	(e)
n = 5	in CDCl ₃	+ 133.5	- 151.6	(p)
0 $N-N=0$	in CDCl ₃	+142.1	- 153.6	(p)
ŅO	in acetone			
N COOMe	(Z, 50%)	+118.6	-152.1	
() COOME	(E, 50%)	+119.1	– 157.9	(q)
	(-, -, -, -,	,		` •'

<u>R</u>		N	NO	
CH ₂ CH ₂ COOMe CH ₂ CH ₂ CH ₂ COOMe	in CDCl ₃ in CDCl ₃	+ 141.0 + 139.1	-159.4 -156.3	(q) (q)
COOMe	(Z, 40%) in CDCl ₃	+147.0	-157.0	
CO(NMe)CH ₂ COOMe	(E, 60%) in CDCl ₃ (E, 50%) in CDCl ₃	+ 149.3 + 145.3	162.4 153.9	(q) (q)
		+148.0	-159.4	(q)
COOH	(Z, 50%) in aqueous	+ 142.1	-152.0	(p)
CH ₂ CONH ₂	(E, 50%) acetone (E, Z) in	+ 144.5	-158.2	(q)
C112 CO14112	(E, Z) in CD_3OD/D_2O (1:1)	- -	- 161.3 165.2	(r)
CN	(E, Z) in	+ 154.9	-156.4	(r)
	CD_3OD/D_2O (1:1)	+149.3	-161.3	(r)
		N	NO	
MeNH—N=O K ⁺	in El ₂ O	-	-171.7	(s)
R ^{N−N} >O				
↓ ↑				
	in DMSO,			
$R \stackrel{N=N}{\smile} O^-K^+$	$\mathbf{R} = \mathbf{Me}$	+42.4	-133.0	(s)
I♠	$R = Et$ $R = Pr^{n}$	+ 36.9 + 25.3	- 128.9 - 127.4	(s) (s)

Table 29. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referre neat nitromethane		Notes
R_N-N=0	in DMSO,	N	NO	
κ ⁺	$R = Me$ $R = Pr^{n}$	+ 18.8 ?	- 182.8 - 153.5	(s) (s)
$N = \sqrt{g_{Q_{ij}}} K^{+}$	in DMSO, R = Me $R = Pr^n$	+ 18.8 ?	- 182.8 - 153.5	(s) (s)
$\begin{bmatrix} Me & N-N-O \end{bmatrix} K^{+}$	in CD ₃ OD	+ 34.1	- 186.8	(s)
Me_N=N-OH	in CD ₃ OD	+ 33.8	- 187.2	(s)
Me NO	33% v/v in CDCl ₃			(t)
R		N	NO	
4-OMe 4-Me 4-Pr ⁱ 3-Me H 4-F 3-OMe 4-Cl		+ 129.9 + 129.1 + 129.0 + 128.6 + 128.5 + 130.1 + 128.7 + 130.1	- 161.3 - 163.5 - 164.0 - 164.9 - 165.4 - 165.0 - 165.9 - 166.1	

4-Br 3-F 3-Cl 3-Br 3-CF ₃ 4-CF ₃ 3-NO ₂ 4-NO ₂		+ 130.0 + 129.2 + 129.5 + 129.8 + 129.8 + 129.2 + 129.8 + 128.5	166.1 167.3 167.5 168.4 169.9 169.6 173.6	
		N	NO	
ON N N NO	in DMSO anti-anti anti-(syn) (anti)-syn syn-syn	+ 131.1 + 133.2 + 134.8 + 137.7	169.1 169.9 166.1 165.1	NITROGEN NI (u)
ON—N—NO Me	in DMSO anti-anti (anti)-anti syn-(anti) (syn)-anti anti-(syn) (anti)-syn syn-(syn) (syn)-syn	+ 132.9 + 123.2 + 133.3 + 127.5 + 135.6 + 128.5 + 137.3 + 131.5	- 165.0 - 160.4 - 162.7 - 157.6 - 161.4 - 160.4 - 158.4 - 156.5	NITROGEN NMR SPECTROSCOPY (a) (b) (c)
$ON - N - NO_2$	in DMSO anti syn	+ 134.9 + 139.2	- 158.4 - 165.6	(u)
ON NO NO	in DMSO anti-anti anti-(syn)	+ 135.9 + 136.7	- 168.7 - 169.7	(u) 38.5

Table 29. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane		Notes	
	(anti)–syn	+ 137.8 + 138.2	- 169.7 - 169.1		
ON NO	syn-syn	₸ 130.2	- 109.1		
N N NO	in DMSO			(u)	
Ĭ Į	anti–(anti)	+136.8	– 169.4		
\.\.	(anti)–anti	+ 127.4	– 169.4		
Me	syn–(anti)	+ 137.6	– 169.9		
	(syn)–anti	+ 125.3	– 169.9		
	anti–(syn)	+139.8	– 168.9		
	(anti)–syn	+ 126.6	– 168.9		
	syn-(syn)	+ 139.9	– 170.3		
	(syn)–syn	+127.2	- 168.3		
ON NO	in DMSO			(u)	
N N	anti-anti	+ 128.2	- 166.5	` '	
	anti-(syn)	+ 130.0	-158.1		
	(anti)–syn	+ 133.5	- 164.7		
	syn-syn	+ 136.7	-165.6		
	in DMSO			(v)	
	anti-anti	?	-173.6	()	
^^	anti-(syn)	?	- 169.6		
ŢŢ	(anti)–syn	?	-156.8		
ŇŢŇ	syn-syn (skew)	?	-168.0		
I I NO NO	in CDCl ₃			(v)	
(trans ring	anti–anti	?	-173.2	(*)	
junction)	anti-(syn)	· ?	– 169.8		
janenon,		; ?	- 157.4		
	(anti)-syn syn-syn (skew)	; ?	- 167.1		

Me N N	in DMSO anti-anti anti-(syn) (anti)-syn syn-syn (skew)	? ? ? ?	- 185.0 - 171.0 - 153.7 - 159.3, - 161.3	(v)
NO NO (trans ring junction)	in CDCl ₃ anti-anti anti-(syn) (anti)-syn syn-syn (skew)	? ? ? ?	- 185.7 - 172.7 - 155.1 - 161.1, - 163.3	(v)
CH-CHCOOH NHCOMe NO Me	in DMSO/H ₂ O (E, 65%) (Z, 35%)	+ 100.7 + 101.1	- 169.9 - 184.6	(w) ROGEN NMR
Me NO	in CHCl ₃ (Z, 100%)	+ 100.8	- 183.0	(w) (x)
Pd(OOCMe) N=0 N Me	in CDCl ₃		- 34.7 (NO)	(x)
X(CI)PPh ₃ PPh ₃ N NO	in CDCl3 X = Pt X = Pd		- 164.4 (NO) - 156.9 (NO)	(x) (x)
$X(Cl)P(OMe)_{3}$ $N=O$ N Me	in CDCl3 X = Pt X = Pd		-40.9 (NO) -58.2 (NO)	(x) (x)

- (a) Data from ref. 30, high-precision ¹⁴N spectra, 4.33 MHz, referenced to neat nitromethane, + 35°C ± 0.3, lineshape fitting, differential saturation CW technique, concentric spherical sample/reference containers in order to eliminate bulk susceptibility effects.
 - (b) See ref. 5, pp. 574-590, and references therein.
- (c) Data from ref. 360, 10.095 MHz ¹⁵N spectrum, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (d) Data from ref. 31, details as in footnote (a).
- (e) Data from ref. 1176, 25.35 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (f) Data from ref. 1188, spectrometer not reported, referenced to 8 M HNO₃, + 14.5 ppm from neat nitromethane (Table 2), conversion scheme II (Table 1); originally reported relative to liquid ammonia reference, taken at + 366 ppm from the standard employed.
 - (g) Data from ref. 89, details as in footnote (a).
 - (h) See footnote (b).
- (i) Data from ref. 1199, 14.46 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to NO₃⁻ in saturated aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); 0.1-1.1 M solutions, aged for 5 min to 4 h; additional signal of free nitrite ion was observed at -231 ppm.
- (j) Data from ref. 1200, ¹⁵N-labelled NO₂⁻, 8.104 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to saturated aqueous NaNO₂, -228.9 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 4); Na-aspartate gegenion, en = ethylenediamine ligand.
- (k) Data from ref. 1201, low-precision ¹⁴N spectra, referenced originally to aqueous NaNO₃, ca. +4 ppm from neat nitromethane.
- (1) Data from ref. 479, 30.42 MHz¹⁵N spectra, field parallel to sample tube, referenced originally to 1 M NaNO₃, + 3.5 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (m) Data from ref. 1202, 14.46 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to NO_3^- in saturated aqueous NH_4NO_3 , +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); the sharp resonances observed at +73 ppm are probably those of N_2 dissolved in the samples (see Table 31).
- (n) Data from ref. 1203, low-precision ¹⁴N spectra, 14.4 MHz, reference not reported, but the resonance of neat pyridine, at + 52 ppm in the original spectrum, + 62 ppm from neat nitromethane according to Table 2, was used here for recalculation.
 - (o) Data from ref. 1204, details as in footnote (m).
- (p) Data from ref. 892, ¹⁵N-labelled NO group, 20.28 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; originally reported relative to liquid ammonia reference, taken at + 380.22 ppm from nitromethane; this is erroneous, since latter value was obtained (Table 2) under conditions where the field was perpendicular to the sample tube.
- (q) Data from ref. 1074, 25.4 MHz ¹⁵N spectra, field parallel to sample tube, Cr(acac)₃ added as a relaxation reagent, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; original assignments are erroneously reversed as far as the amino and nitroso moieties are concerned.

- (r) Data from ref. 1205, 18.25 MHz¹⁵N spectra, field parallel to sample tube, originally referenced to 0.1 m HNO₃, +6.2 ppm from neat nitromethane, and originally recalculated to the latter, uncorrected for bulk susceptibility effects.
- (s) Data from ref. 837, double ¹⁵N-labelling, 20.28 MHz ¹⁵N spectra, field parallel to sample tube, referred originally to external formamide, but reported vs liquid ammonia; no conversion constant was reported. We use a value of + 381.9 ppm for ammonia vs neat nitromethane for recalculation (see Table 2), conversion scheme IIb (Table 1).
- (t) Data from ref. 1206, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
- (u) Data from ref. 373, 20.3 MHz¹⁵N spectra, Cr(acac)₃ added as a relaxation reagent, referenced to *internal* nitromethane (solutions in DMSO), -2.0 ppm from neat nitromethane (Table 2).
- (v) Data from ref. 1207, 20.28 MHz, 30.4 MHz, 36.5 MHz and 50.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to formamide in DMSO, +264.7 ppm from neat nitromethane (Table 2), conversion scheme IVd (Table 1); the data were reported originally vs liquid ammonia reference, taken at +108.5 ppm from the actual standard employed.
 - (w) Data from ref. 1208, 25.3 MHz¹⁵N spectra, other details as in footnote (t).
- (x) Data from ref. 1209, ¹⁵N labelled NO moiety, 20.3 and 25.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to liquid NH₃, + 381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

Table 30. Nitrogen shieldings in nitrogen oxides, nitrogen-oxygen ions and related species

Compound	Solution or state	Nitrogen (ppm) refe neat nitro	erred to	Notes
n=n=o	· · · · · · · · · · · · · · · · · · ·	N	NO	(a)
	gaseous, 10 ⁵ Pa adsorbed on Na–Y	+147.3	+ 235.5	
	zeolite, 293 K, $220 \mu \text{mol g}^{-1}$	+ 150.6	+ 228.8	
	adsorbed on H-Y zeolite, 293 K, 145 µmol g ⁻¹ adsorbed on H-ZSM-5	+ 146.0	+205.6	
	zeolite, 500 μmol/g,	1 120 4	han and	
	293 K 353 K	+ 120.4	broad	
	adsorbed on H-ZSM-5	+138.8	+ 191.2	
	zeolite, 293 K, $180 \mu\text{mol g}^{-1}$ $+ 170 \mu\text{mol g}^{-1}$ CO	+ 132.4	+ 227.9	
	adsorbed on 10% H_3PO_4/SiO_2 catalyst, 293 K , $80 \mu\text{mol g}^{-1}$ adsorbed on γ -Al ₂ O ₃ , 293 K , $120 \mu\text{mol g}^{-1}$, pretreated in	+ 147.2	+ 234.2	
	vacuum at 473 K for 4 h 773 K for 8 h 873 K for 8 h	+ 146.8 + 149.2 + 148.3	+230.2 +219.5 +213.0	
NO ⁺	in 50% D_2SO_4 in 98% H_2SO_4 in FSO ₃ H	+ 28 + 5 - 1		(b) (b) (b)
NO+ AlCl ₄	in liquid SO ₂ , -65°C	+2.6		(c)
Me Me	in liquid SO₂, −70°C	+ 399.1		(c)
N_2O_3	neat liquid	-60 (N	O_2)	(d)
N_2O_4	various	- 300 (No + 10 to	•	(d) (d)

Table 30. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
N_2O_5	various	+48 to +64	(d)
	in MeCN	+62	(e)
	in CF ₃ COOH	+63	(e)
	in (CF ₃ CO) ₂ O	+ 66	(e)
NO ₂ ⁺	various	ca. + 133	(d)
$NO_2^+[Sn(OOCCF_3)]^-$	in MeNO ₂	+ 124	(e)
HNO ₃	neat liquid	+42.5	(d)
-	in CF ₃ COOH	+45	(e)
	in (CF ₃ CO) ₂ O	+66	(e)
HNO ₂	aqueous HCl	-180 to -200	(d)
-	in 3-50% D ₂ SO ₄	-183 to -193	(b)
$H_1N_2O_2$	aqueous	ca32	(d)
NO ₃ Na ⁺	0.3 м in H ₂ O	+3.5	(d)
$NO_2^- Na^+$	0.3 m in H ₂ O	-227.6	(d)

⁽a) Data from refs 1210 and 1211, 30.42 MHz ¹⁵N spectra, 60% ¹⁵N enrichment at both sites, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects

⁽b) Data from ref. 714, ¹⁵N-labelled samples, 20.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to liquid NH₃, +381.9 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).

⁽c) Data from ref. 1212, referenced to neat nitromethane, uncorrected for bulk susceptibility effects, other experimental details not reported.

⁽d) See ref. 5, pp. 587-590, and references therein.

⁽e) Data from ref. 1195, 7.2 MHz ¹⁴N spectra, field perpendicular to sample tube, referenced originally to NO₃⁻ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).

Table 31. Nitrogen shieldings in dinitrogen and its complexes, diazenido complexes and related structures

Compound	Solution or state		hielding (ppm) neat nitromethane	Notes
N ₂ (dinitrogen)	gaseous, 300 K	+ 74.2		(a)
	in cyclohexane		+ 70.2	(b)
	in n-pentane	+71.7		(c)
	in mineral oil	+71.5		(c)
	in acetone,			
	35°C		+70.5	(b)
	$-20 \text{ to } +25^{\circ}\text{C}$	+71.5	(+71.2)	(c)
	−40°C	+71.7		(c)
	−60°C	+71.8		(c) (c)
	in DMSO	+ 70.6	(+69.6)	(c)
			+ 69.8	(b)
	in MeCN	+71.4		(c) (b)
	in CCl ₄		+69.8	(b)
	in CHCl ₃	+71.3	(+69.9)	(c) (b)
			+69.6	(b)
	in CH ₂ Cl ₂	+71.7	(+70.3)	(c)
	- -		+69.9	(b)
	in benzene		+ 70.4	(b)
	in toluene	+71.6		(c)
	in Et ₂ O		+70.6	(c) (b)
	in dioxane		+70.2	(b)
	in tetrahydrofuran	+72.0	•	(c)
	in MeOH	,	+ 70.8	(b)
	in EtOH	+71.6	(+70.8)	(c)
	2.0	, , , , , ,	+ 70.4	(b)
	in Bu¹OH	+71.6	• • • • • • • • • • • • • • • • • • • •	(c)
	in CF ₃ CH ₂ OH	1	+71.5	(b)
	in MeCOOH	+71.6	,	(c)

	in H ₂ O	+71.5	(+70.1) +69.6	(c, d) (b)
Dinitrogen complexes		N_{α}	N_{β}	
$trans-[Mo(N_2)_2(dppe)(depe)]$	in THF	+45.1	+45.1	(e)
trans- $[Mo(N_2)_2(L)(dppe)(depe)]$ L	in THF(?), −3°C in THF	+41.2	+41.2	(f) (f)
PhCN p-OMe-benzonitrile p-MeCO-benzonitrile	(-3°C) (+25°C) (+25°C)	+ 19.6 + 25.0 - 3.1	+30.3 +30.2	2
trans- $[Mo(N_2)_2(depe)_2]$	in THF in THF(?), -3°C in toluene, +15°C in toluene, -30°C	+ 42.0 + 42.0 + 42.5 + 43.8	+ 43.4 + 43.0 + 43.8 + 46.1	(e) (f) (e) (e) (g) (f)
trans- $[Mo(N_2AlMe_3)(N_2)(depe)_2]$ trans- $[Mo(N_2)_2(L)(depe)_2]$ L	in toluene in THF, +25°C	+45.6	+ 45.6	(g) (f)
PhCN p-OMe-benzonitrile		+ 16.4 + 24.0	+ 31.0 + 30.9	SCOFF
trans- $[Mo(N_2)_2(dppe)_2]$	in THF in THF(?), -3°C in toluene, -40°C	+43.1 +43.1 +45.1	+ 42.8 + 42.8 + 45.1	(e) (f) (e)
trans- $[Mo(N_2AlMe_3)(N_2)(dppe)_2]$ trans- $[Mo(N_2)_2(L)(dppe)_2]$ L	in toluene in THF(?), -3°C	+45.4	+ 45.4	(g) (f)
MeCN n-PrCN		+ 31.2 + 32.2	+ 34.0 + 35.9	030

Table 31. —cont.

Compound	Solution or state		nielding (ppm) neat nitromethane	Notes
PhCN p-OMe-benzonitrile p-F-benzonitrile p-MeCO-benzonitrile		+ 24.0 + 28.6 + 24.8 + 7.0	+ 33.0 + 33.7 + 35.1 + 34.8	
trans- $[Mo(N_2)_2(L)(PMe_2Ph)_3]$ L	in THF/benzene (9:1 v/v)			(i)
N-Me-imidazole 4-Me-pyridine		+ 37.4 + 37.7	+ 50.3 + 51.7	
3-Me-pyridine		$\begin{cases} +36.0 \\ +38.4 \end{cases}$	+ 50.8 + 55.9	
3-PPh ₂ -pyridine		$\begin{cases} +37.6 \\ +38.2 \end{cases}$	+ 49.2 + 52.2	
PMePh ₂ P(OMe) ₃ Ph ₂ PCH ₂ CH ₂ SMe		+ 37.6 + 42.9 + 42.7	+ 44.7 + 45.1 + 46.8	
trans-[W(N ₂) ₂ (dppe)(depe)] trans-[W(N ₂) ₂ (depe) ₂] trans-[W(N ₂) ₂ (dppe) ₂]	in THF in THF, +18°C in toluene, -40°C in THF(?), -3°C	+ 59.4 + 63.7 + 66.6 + 60.1	+ 47.4 + 52.4 + 55.5 + 48.6	(e) (e) (e) (f)
trans- $[W(N_2AlMe_3)(N_2)(dppe)_2]$ trans- $[W(N_2)_2(L)(dppe)_2]$ L	in toluene in THF(?), -3°C	+ 64.3	+ 82.2	(g) (f)
MeCN		+42.3	+ 55.5	

n-PrCN		+43.4	+ 56.3	
PhCN	$(+25^{\circ}C)$	+28.1	+ 56.3	
trans- $[W(N_2)_2(PEt_2Ph)_4]$	in THF	+62.1	+ 30.5	(h)
trans-[$\{W(N_2)_2(PEt_2Ph)_4\}_2(\mu-N_2)$]	in THF	+64.6	+ 44.9	(h)
		$+21.3 (\mu-1)$	N)	(h)
$[\mathbf{W}(\eta^6-\mathbf{C}_6\mathbf{H}_5\mathbf{PEt}_2)(\mathbf{N}_2)(\mathbf{PEt}_2\mathbf{Ph})_2]$	in THF	+ 50.9	-9.0	(h)
$\{\{W(N_2)_2(PPr_2^nPh)_3\}_2(\mu-N_2)\}$		+66.7	+48.1	(h)
		$+25.9 (\mu-N)$	1)	(h)
$[W(\eta^6-C_6H_5PPr_2^n)(N_2)(PPr_2^nPh)_2]$	in THF	+ 54.3	+7.2	(h)
trans-[ReCl(N ₂) ₂ (dppe) ₂]	in CH ₂ Cl ₂	+93.2	?	(e)
trans-[ReCl(N ₂ AlMe ₃)(dppe) ₂]	in toluene	+88.0	+ 127.3	(g)
trans-[ReCl(N ₂) ₂ (dmtpe) ₂]	in CH ₂ Cl ₂	+91.4	+69.1	(e)
$trans-[ReCl(N_2)_2(PMe_2Ph)_4]$	in THF	+86.2	+60.7	(e)
	in toluene, -40°C	+87.2	+63.9	(e)
$trans-[ReCl(N_2AlMe_3)(PMe_2Ph)_4]$	in toluene	+85.4	+129.8	(g)
$[ReCl(N2)(CO)\{C(OH)Me\}(PPh3)2]$	in THF	+111.2	?	(e)
[Ru(NH3)5(N2)]Br2	in HCl _{aq}	+81.3	+43.8	(e)
$mer-[OsCl_2(N_2)(PMe_2Ph)_3]$	in THF	+120.2	+65.2	(e)
mer-[OsCl ₂ (N ₂ AlMe ₃)(PMe ₂ Ph) ₃]	in toluene	+100.6	+ 136.2	(g)
mer-[OsHCl(N ₂)(PMe ₂ Ph) ₃]	in THF	+121.0	+ 67.9	(e)
mer-[OsHBr(N ₂)(PMe ₂ Ph) ₃]	in THF	+ 122.6	+67.3	(e)
$mer-[OsCl_2(N_2)(PEt_2Ph)_3]$	in THF	?	+63.4	(e)
mer-[OsBr ₂ (N ₂)(PEt ₂ Ph) ₃]	in THF	?	+62.8	(e)
trans- $[RhCl(N_2)\{P(C_6H_{11})_3\}_2]$	in CH ₂ Cl ₂	+90.7	+ 59.2	(e)
[Cl5Nb(N2)ReCl(PMe2Ph)4]	in CH ₂ Cl ₂	+74.3	+8.7	(g)
[Cl5Ta(N2)ReCl(PMe2Ph)4]	in CH ₂ Cl ₂	+ 76.7	+ 24.2	(g)
$[TiCl4{(N2)ReCl(PMe2Ph)4}]$	in CH ₂ Cl ₂	+76.7	+53.2	(g)
$[ZrCl4{(N2)ReCl(PMe2Ph)4}]$	in CH ₂ Cl ₂	+ 75.9	+95.0	(g)
$[HfCl4{(N2)ReCl(PMe2Ph)4}]$	in CH ₂ Cl ₂	+75.4	+96.8	(g)
$[(THF)Cl_4Ti(N_2)ReCl(PMe_2Ph)_4]$	in CH ₂ Cl ₂	+68.1	+ 19.0	(g)

Table 31. —cont.

Compound	Solution or state		shielding (ppm) o neat nitromethane	Notes
Hexa-coordinate singly-bent diazenido complexes M-NN/R				
[ReCl(NNCOPh)(py)(PPh ₁) ₂]	in toluene	+ 55.9	+ 148.6	(j)
$[RuCl_3(NN-C_6H_4-NO_2-4)(PPh_3)_2]$	in CH ₂ Cl ₂	+47.7	?	(j)
[RuCl ₃ (NNPh)(PPh ₃) ₂]	in CH ₂ Cl ₂	+46.8	+ 185.6	(j)
$[RuCl_3(NN-C_6H_4-Me-4)(PPh_3)_2]$	in CH ₂ Cl ₂	+46.4	?	(j)
$[W(NNPh)(S_2CNMe_2)_3]$	in CH ₂ Cl ₂	+38.2	+ 138.0	(j)
[MoCl(NNCOMe)(dppe) ₂]	in THF	+ 35.4	+ 123.7	(j)
[WCl(NNCOMe)(dppe) ₂]	in THF	+ 32.2	+ 134.5	(j)
[WBr(NNEt)(dppe) ₂]	in THF	+28.2	+ 164.7	(j)
$[WBr(NNH)(dppe)_2]$	in THF	+ 25.9	+ 187.1	(j)
$[WF(NNH)(dppe)_2]$	in THF	+ 24.6	+ 182.6	(j)
$[ReBr_2(NNPh)(NNHPh)(PPh_3)_2]$	in CH ₂ Cl ₂	+ 3.7	+ 124.7	(j)
$[MoBr(NNEt)(dppe)_2]$	in CH ₂ Cl ₂	+ 2.6	+ 153.6	(j)
[Mo(PhCN)(NNEt)(dppe) ₂][BPh ₄]	in CH ₂ Cl ₂	-13.7	+134.2	(j)
Penta-coordinate singly-bent diazenido complexes M—NN / R				
$[Fe(CO)_2(NNPh)(PPh_3)_2][PF_6]$	in CH ₂ Cl ₂ , 0°C	-15.6	+ 104.2	(j)
[Ir(NNPh)(dppe) ₂][PF ₆] ₂	in CH ₂ Cl ₂ , 0°C	-46.4	+38.2	(j)
[Os(CO) ₂ (NNPh)(PPh ₃) ₂][PF ₆]	in CH_2Cl_2 , $-10^{\circ}C$	-58.5	+21.4	(j)
[IrCl(NNPh)(PPh ₃) ₃][BF ₄]	in CH_2Cl_2 , $-30^{\circ}C$	-59.0	+ 22.9	(j)
[IrCl(NNPh)(PMePh ₂) ₃][BF ₄]	in CH ₂ Cl ₂ , 0°C	-64.0	+ 23.6	(j) (j)
[OsH(CO)(NNPh)(PPh ₁) ₃]	in CH ₂ Cl ₂ , 0°C	-98.9	+ 35.5	(j)
[RhCl(NNPh)(PMePh ₂) ₃][PF ₆]	in CH ₂ Cl ₂ , 0°C	-109.2	-4.8	(j)
[Ru(CO)2(NNPh)(PPh3)2][BF4]	in CH ₂ Cl ₂ , 0°C	-116.8	+25.2	(j)

Tetra-coordinate singly-bent diazenido complexes

i etra-coordinate singly-bent diazemdo complexes				
$M-NN^R$				
trans-[IrCl(NNPh)(PPh ₃) ₂][BF ₄] trans-[RhCl(NNPh)(PPh ₃) ₂][PF ₆]	in CH_2Cl_2 in CH_2Cl_2 , $-10^{\circ}C$	+ 92.1 + 89.8	+ 239.0 + 225.7	(j) (j)
Doubly-bent diazenido complexes				
M_NN_R				
[RhCl(NNPh){PhP(CH ₂ CH ₂ CH ₂ PPh ₂) ₂ }][PF ₆]	in CH ₂ Cl ₂	{ 137.9 84.6	-40.2 +26.8	(j) (j)
[ReCl ₂ (NNCOPh)(PPh ₃) ₂][PF ₆] [IrBr(NNPh)(dppe) ₂][PF ₆]	in CH ₂ Cl ₂ in CH ₂ Cl ₂	- 157.4 - 220.5	+ 72.0 - 158.3	(j)
[RhCl(NNPh)(dppe) ₂][PF ₆]	in CH ₂ Cl ₂ , 0°C	- 220.3 - 224.6	- 136.3 - 135.3	(j) (j)
$[IrCl_2(CO)(NNPh)(PPh_3)_2]$	in CH_2Cl_2 , $-10^{\circ}C$	-241.4	-150.2	(i)
[RhCl ₂ (NNPh)(PEtPh ₂) ₂]	in CH ₂ Cl ₂	-241.0	?	(j)
[PtCl(NNPh)(PEt ₃) ₂] [RhCl ₂ (NNPh)(PEt ₃) ₂]	in THF in CH ₂ Cl ₂	-285.0	– 162.0	(j)
[RhCl2(NN-Ph)(PEl3)2] $[RhCl2(NN-C6H4-NO2-4)(PPh3)2]$	in CH ₂ Cl ₂	298.4 327.1	? ?	(j) (j)
Cyclopentadienyl-diazenido complexes				(3)
[Cp Re(CO) ₂ (NN-C ₆ H ₄ -OMe-4)]BF ₄	in acetone	+17.0*	_	(k)
		+ 16.1	+125.5	(k)
[Cp Re(CO) ₂ (NNPh)]BF ₄	in acetone	_	+ 125.1*	(k)
[Cpme Re(CO) ₂ (NN-C ₆ H ₄ -OMe-4)]BF ₄	in acetone	+7.3*	-	(k)
IC D (CO) OPENING		+6.7	+ 123.0	
[Cpme Re(CO ₂)(NNPh)]BF ₄	in acetone	-	+118.5*	(k)
IC no(CO)/MoCNI/AINC II OMo ANDE	:	+ 8.5	+118.0	(k)
[Cpme Re(CO)(MeCN)(NNC ₆ H ₄ -OMe-4)]BF ₄	in acetone	+ 6.1* + 6.9	+ 135.1	(k)
[Cpme Re(CO)(PMe ₃)(NNC ₆ H ₄ -OMe-4)]BF ₄	in acetone	+0.6*	T 133.1	(k) (k)
Como rescontinos de la como alla de	m accone	+ 1.9	+ 126.0	(k)
			= 0.0	(/

Table 31. —cont.

Compound	Solution or state	Nitrogen shi referred to n	elding (ppm) eat nitromethane	Notes
[Cpme Re(CO){P(OMe) ₃ }(NNC ₆ H ₄ -OMe-4)]BF ₄	in acetone	+2.0*	_	(k)
$[Cp Re(CO)_2N_2)]$	in acetone	+121.1*	+ 58.2*	(k)
[Cpme Re(CO) ₂ (N ₂)]	in acetone	+111.0*	+28.1*	(k)
72(2/2		+ 110.9	+ 26.1	(k)
[Cpme Re(CO)(PMe ₁)(N ₂)]	in acetone	+90.7*	_	(k)
[+90.2	+29.9	(k)
[Cpme Re(CO){ $P(OMe)_3$ }(N_2)]	in acetone	+98.2*	-	(k)
[-F		+98.3	+ 30.3	(k)

- (a) See ref. 5, p. 591, and references therein.
- (b) Data from ref. 1213, 36.14 MHz ¹⁴N spectra, field parallel to sample/reference tubes, 10 mm/4 mm, referenced to 0.3 m nitromethane in acetone, +0.77 ppm from neat nitromethane (Table 26), +35.0 ± 0.3°C, corrected for bulk susceptibility effects at that temperature and recalculated to neat nitromethane scale, Lorentzian lineshape fitting employed.
- (c) Data from ref. 992, 28.9 MHz ¹⁴N and 40.5 MHz ¹⁵N spectra, field parallel to sample tube, +25°C, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; the numbers in parentheses come from our recalculations by introducing due corrections for bulk susceptibility effect.
- (d) Data from ref. 1096, N₂ dissolved in aqueous Leu-enkephalin, 28.9 MHz ¹⁴N spectra, other details as in footnote (c).
- (e) Data from ref. 891, ¹⁵N-labelled N₂, 18.4 MHz and 36.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; abbreviations, dppe = Ph₂PCH₂CH₂PPh₂; depe = Et₂PCH₂CH₂PEt₂; dmtpe = Me₂PCH₂CH₂PMe₂; THF = tetrahydrofuran.
- (f) Data from ref. 894, 18.24 MHz ¹⁵N spectra, samples prepared under argon, solvent not reported, probably tetrahydrofuran (THF), other details as in footnote (e).
 - (g) Data from ref. 954, details as in footnote (e).
 - (h) Data from ref. 1214, 36.4 MHz ¹⁵N spectra, other details as in footnote (e).
 - (i) Data from ref. 1215, ca. 0.05 m solutions, details as in footnote (e).
 - (j) Data from ref. 900, details as in footnote (e); py = pyridine.
- (k) Data from ref. 916, unlabelled and ¹⁵N-labelled (*) samples, 40.5 MHz¹⁵N spectra and 28.7 MHz¹⁴N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects; abbreviations, Cp = cyclopentadienyl anion, Cpme = pentamethylcyclopentadienyl anion.

Table 32. Nitrogen shieldings in ammino complexes and related structures

Compound	Solution or state		nielding (ppm) neat nitromethane	Notes
Pt(II) complexes	in D ₂ O	+ 435.9		(a)
H ₃ N Pt OH	$m D_2 O$	T 433.9		(a)
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} Pt \begin{bmatrix} OH_2 \\ OH_2 \end{bmatrix}^{2+}$	in H ₂ O	+ 444.8		(a)
H ₃ N Pt Cl	sat. in D ₂ O	+430		(b)
	in D ₂ O,			
H ₃ N OH ₂	trans to O	+ 447.6		(c)
H ₃ N NH ₃	cis to O	+422.8		(c)
[H ₃ N ₂ _Cl] ²⁺	in D ₂ O,			
\textstyle Pt \	trans to Cl	+428.8		(c)
[H ₃ N NH ₃]	cis to Cl	+ 425.0		(c)
$\left[H_{3}N_{n} OOC(CH_{3})_{n}NH_{3} \right]^{2+}$	in D ₂ O			(a)
H ₃ N OH ₂		trans	cis	` `
		to OH ₂	to OH ₂	
n = 1 (glycine)		+ 446.6	+441.6	
$n = 2 (\beta$ -alanine)		+ 446.3	+441.0	
$n = 3$ (γ -aminobutyric acid)		+446.1	+440.7	

Table 32. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Solution or state Nitrogen shield referred to near		Nitrogen shielding (ppm) referred to neat nitromethan		Note
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix}_{P1} \underbrace{OOC(CH_2)_n NH_3}_{NH_3}^{2+}$	in D ₂ O			(a)			
[130]		trans to OOC	cis to OOC				
n = 1 $n = 2$ $n = 3$		+ 444.7 + 444.0 + 443.7	+ 424.0 + 424.1 + 424.1				
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} Pt \begin{bmatrix} OOCMe \\ NH_3 \end{bmatrix}^+$	in D ₂ O	trans to OOC	cis to OOC	(a)			
$\left[H_{3}N \right]^{2+}$		+443.8	+ 424.3				
$\begin{bmatrix} H_3N & Pt \\ OOC(CH_2)_nNH_3 \end{bmatrix}$ $n = 1$ $n = 2$ $n = 3$	in D ₂ O	+ 442.9 + 442.5 + 442.6		(a)			
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix}^{p_1} \stackrel{OOC(CH_2)_nNH_3}{OH} \end{bmatrix}^{2+}$	in D ₂ O	trans to OH	cis to OH	(a)			
n = 2 $n = 3$		+ 441.9 + 441.6	+ 437.5 + 437.5				

$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} Pt < \frac{OOC(CH_2)_n NH_3}{CI} \end{bmatrix}^{2+}$	in D_2O	trans to Cl	cis to Cl	
n = 1 $n = 2$ $n = 3$		+ 427.2 + 427.5 + 427.6	+ 444.2 + 443.6 + 443.3	
$ \begin{array}{c c} H_3N & NH_3 \\ Pt-O \\ HO & C(CH_2)_nNH_3 \\ Pt-O \end{array} $	in D_2O			
H ₃ N NH ₃		to OH	to OH	
n = 2 $n = 3$		+436.1 +435.9	+ 442.8 + 442.5	
H ₃ N 0 C 0	in D ₂ O			1
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ $	-	trans to O	cis to O	
$n=2 \\ n=3$		+ 444.4 + 444.2	+ 416.2 + 420.2	
Me T	in D ₂ O			
$\begin{array}{c c} H_3N & Pt & S & (CH_2)_n \\ H_3N & NH_2 & CH \\ \hline & COO \end{array}$	-	trans to S	cis to S	_
n = 1 (COO trans to Me, pH = 5)		+406.6	+426.4	_
(COO cis to Me, pH = 7) n = 2 (COO trans to Me, major)		+ 406.2 + 401.2	+ 426.4 + 421.2	
(COO cis to Me, minor)		+401.2	+420.9	

Table 32. —cont.

Compound	Solution or state		nielding (ppm) neat nitromethane	Notes
$\begin{bmatrix} Me \\ H_{3}N \\ H_{3}N \end{bmatrix}^{P_{1}} S \xrightarrow{I} (CH_{2})_{n} $ $I \\ NH_{2} - CH \\ COOH \end{bmatrix}^{2+}$	in D ₂ O	trans to S	<i>cis</i> to S	(d)
n = 1 (COO trans to Me) (COO cis to Me) n = 2		+ 406.4 + 406.6 + 401.4	+ 426.5 + 426.7 + 421.3	
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} Pt \begin{bmatrix} O - C \\ S - (CH_2)_n \\ Me \end{bmatrix}^{2+}$	in D ₂ O	trans to S	cis to S	(d)
 n = 1 (isomer not assigned) (isomer not assigned) n = 2 (major isomer) (minor isomer) 		+ 396.6 + 398.7 + 399.1 + 402.3	+ 441.5 + 443.5 + 441.5 + 441.5	
COO H ₃ N Pt SMe — CH-CH ₂ CHNH ₃ H ₃ N SMe — CH-CH ₂ CHNH ₃ COO]	in D_2O	+401.4 (N	H ₃ Pt)	(d)

Table 32. —cont.

Compound	Solution or state		nielding (ppm) neat nitromethane	Notes
$\begin{bmatrix} O & & CH &NH_2 \\ I & & I \\ O & Me - C - Me \\ I & I \\ H_3N - Pt & S &Pt - NH_3 \\ I & & NH_3 \end{bmatrix}^+$	in D ₂ O trans to O cis to O trans to N cis to N	+447.8 +394.9 +430.3 +405.1		(e)
$ \begin{array}{ll} H_3N \\ H_3N \end{array} > Pt \stackrel{NH_2(CH_2)_nCOO}{OH} $ $ \begin{array}{ll} n = 2 \\ n = 3 \end{array} $	in D ₂ O	trans to OH + 437.4 + 437.6	cis to OH + 422.7 + 422.9	(a)
$\begin{bmatrix} H_3N > Pt < NH_2(CH_2)_nCOOH \\ H_3N > Pt < OH_2 \end{bmatrix}^{2+}$	in D ₂ O	trans to OH ₂	cis to OH ₂	(a)
$n = 3$ $H_3N Pt $	in D_2O	+ 444.6	+ 422.3	(a)
n = 2 $n = 3$		+ 423.3 + 423.5		

$\begin{bmatrix} H_3N > P_1 < NH_2(CH_2)_n COO \\ NH_3 \end{bmatrix}^+$	in D_2O	trans to NH ₂	cis to NH ₂	(a)	
n = 1 $n = 2$ $n = 3$		+ 426.3 + 425.0 + 425.2	+ 424.0 + 424.2 + 424.3	_	
$\begin{bmatrix} H_3N_{P_1} & O & O & O \\ & & & & & \\ & & & & & \\ & & & &$	in D_2O	trans to NH ₂	cis to NH ₂	(f)	NIT
H ₃ N NH ₂ —CH ₂		+ 423.8	+447.3		õ
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} P_1 \begin{bmatrix} NH_2CH_2CONH_2 \\ NH_3CH_2CONH_2 \end{bmatrix}^{2+}$	in D ₂ O	+ 424.5		(f)	EN NMF
$\begin{bmatrix} H_{3}N \\ H_{3}N \end{bmatrix} Pt \begin{bmatrix} O & C & C \\ N & CH_{2} \end{bmatrix}^{2+}$ $O \begin{bmatrix} CH_{2} \\ CH_{2} \end{bmatrix}$	in D ₂ O trans to N cis to N trans to NH ₂ cis to NH ₂	+ 424.3 + 443.5 + 423.3 + 445.1		(f)	NITROGEN NMR SPECTROSCOPY
H ₃ N—Pt—NH ₂ NH ₃		trans to OOC	cis to OOC	(f)	×
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} Pt \underbrace{OH_2}_{OOCCH_2NHCOCH_2NH_3} $ 2+	in D_2O	+441.1	+ 446.3	_	
H ₃ N Pt OOCCH ₂ NHCOCH ₂ NH ₃ 2+	in D ₂ O	+ 442.9		(f)	405

Table 32. —cont.

Compound Solution or state		Nitrogen shielding (ppm) referred to neat nitromethane		Notes
H ₃ N P ₁ NH ₂ CH ₂ CONHCH ₂ COO	in D ₂ O	+ 424.5		(f)
г		trans to OOC	cis to OOC	(f)
H ₃ N P1 OOCCH ₂ NHCOCH ₂ NH ₃ + NH ₂ CH ₂ CONHCH ₂ COO	in D_2O	+ 441.6	+ 425.0	_
H ₃ N Pt O NHCH ₂ COOH 2+	in D ₂ O	trans to NH ₂	cis to NH ₂	(f)
H ₃ N NH ₂ —CH ₂		+ 423.9	+ 447.6	
$\begin{bmatrix} H_3N \\ Pt & \end{bmatrix} $	in D_2O	trans to N	cis to N	(f)
H ₃ N NH ₂ —CH ₂ CH ₂ NH ₃		+ 423.5	+ 446.3	_
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} Pt < \begin{matrix} OOCCH_2NHCOCH_2NHCOCH_2NH_3 \\ OH_2 \end{bmatrix}^{2+}$	in D_2O	trans to OOC	cis to OOC	(f)
Γ ,o]+		+ 446.2	+ 444.1	
H ₃ N Pt O CH ₂	in D ₂ O	trans to N	cis to N	(f)
O CH2NHCOCH2NH3		+423.5	+ 446.0	_

(f)

(f)

(f)

(f)

(f)

(f)

H ₃ N P ₁ O C	3+
H ₃ N N—CH ₂	
H ₃ N—Pt—N—CCH ₂ NH ₂ NH ₃ II I NH ₃ O—Pt—NH ₃	
NH ₃	J

in
$$D_2O$$

trans to O + 443.5, +443.7, +445.3
cis to O + 423.3, +423.9, +424.3

in D_2O

trans cis to OOC to OOC +441.1 +446.2

OOCCH2NHCOCH2NHCOCH2NHCOCH2NH3

in D₂O

+441.8

$$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} Pt \begin{cases} OOCCH_2CH(NH_3)COOH \\ OH_2 \end{bmatrix}^2$$

in
$$H_2O$$
,
pH = 1.5

in H₂O,

pH = 1.5

Table 32. —cont.

Compound	Solution or state		hielding (ppm) neat nitromethane	Notes
H ₃ N Pt O CHCH ₂ COOH	in H ₂ O, pH = 1.5	trans to N	cis to N	(f)
$\begin{bmatrix} H_3N & Pt & O & O \\ H_3N & NH_2 - CHCOOH \end{bmatrix}^+$	in H_2O , pH = 1.5	+ 423.7 trans to N	+ 443.6 cis to N	(f)
$\begin{bmatrix} H_3N & P_1 < O - C & O \\ H_3N & O - C & O \end{bmatrix}^+$	in H_2O , pH = 1.5	+ 424.3 + 439.7	+443.8	(f)
$\begin{bmatrix} H_3N \\ H_3N \end{bmatrix} Pt \begin{bmatrix} O & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	in H_2O , pH = 4.5	+443.5 (cis	ins to H ₂ O)	(f) (f) (f) (f)
$\begin{bmatrix} H_{3}N & Pt & O & & & & \\ H_{3}N & Pt & NH_{2} - CHCH_{2}COO & Pt & NH_{3} \\ H_{3}N & Pt & O & & & & (a) \\ & & & & & & NH_{2} - CHCH_{2}COO \\ & & & & & & (a) \end{bmatrix}^{3+}$	in H_2O , pH = 4.5	+ 442.4 (a-	NH ₃)	(f)

in CDCl₃

+343

(i)

Table 32. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Pt(IV) complexes			
$\begin{bmatrix} OH & OH \\ EtNH_2 & $	in H ₂ O	+ 373.4	(h)
Pd(II) complexes			
$\begin{bmatrix} H_{1}N \\ H_{2}N \end{bmatrix} Pd < \frac{OH_{2}}{OH_{2}} \end{bmatrix}^{2+}$	in D ₂ O	+431.8	(c)
$\begin{bmatrix} H_3N \\ H_2O \end{bmatrix} Pd < \begin{bmatrix} OH_2 \\ NH_3 \end{bmatrix}^{2+}$	in D ₂ O	+417.2	(c)
H_3N OH_2 $^{2+}$	in D ₂ O,		
H ₃ N Pd NH ₃	trans to O cis to O	+431.3 +415.6	(c) (c)
$\begin{bmatrix} H_2O \\ H_3N \end{bmatrix}^{2+} Pd \begin{bmatrix} OH_2 \\ OH_2 \end{bmatrix}^{2+}$	in D ₂ O	+435.3	(c)
H ₃ N Pd Cl	in D ₂ O	+416.5	(c)
H_3N Pd CI NH_3	in D ₂ O	+417.4	(c)

Co(III) complexes $[Co(NH_3)_6]Cl_3$ $[Co(NH_3)_6](NO_3)_3$ $[Co(NH_3)_5L]X_2$		in H_2O in DMSO	+ 423.4 + 421.4		(j) (l)	
L	X		trans	cis		
CN	MeSO ₃	in 0.01 M DCl	+ 401	+ 437	— (k)	
	NO_3	in DMSO	+397.8	+423.4	(1)	
SCN	Cl	in 0.01 M DCl	?	+428	(k)	
NO_2	MeSO₄	in 0.012 M DClO₄	+413 (unre	solved)	(k)	Z
	NO_3	in DMSO	+411	+406	(1)	Ξ
NCS	MeSO ₃	in 0.012 м DClO ₄	+441	+420	(k)	~ ~
N_3	ClO₄	in 0.012 M DClO₄	+ 449	+ 424	(k)	Ω
I	ClO₄	in 0.01 м DCl	+410	+432	(k)	Ë
Cl	ClO₄	in 0.012 M DClO₄	+ 440	+ 425	(k)	Z
	NO_3	in DMSO	+430.3	+415.5	(1)	X
Br	ClO ₄	in 0.01 м DCl	+435	+428	(k)	ŝ
	NO_3	in DMSO	+424.5	+418.7	(1)	PE
F	NO_3	in 0.012 м DClO ₄	+ 449	+ 424	(k)	3
OOCNH ₂	ClO₄	in 0.01 м DCl	+443	+ 427	(k)	R
OOCMe	Cl	in 0.012 м DClO ₄	+ 448	?	(k)	SC
$[Co(NH_3)_5(H_2O)](C$	$(O_4)_3$	0.01 м in DCl	+ 454	+425	(k)	NITROGEN NMR SPECTROSCOPY
$[Co(NH_3)_5(H_2O)](N$	$(O_3)_3$	in DMSO	+442.4	+416.2	(1)	~
[Co(H ₂ NCH ₂ CH ₂ N		in aqueous DCl	+ 395.5		(1)	
[Co(H ₂ NCH ₂ CH ₂ N	$H_2)_2(H_2O)_2(NO_3)_3$	in DMSO	+404.9	+387.9	(1)	
[Co(H ₂ NCH ₂ CH ₂ N	$H_2)_2L_2X_3$					
Ĺ	X		trans	cis		
CN	NO ₃	in DMSO	+ 378.9	+ 399.5		
NO ₂	NO_3	in DMSO	+392.7	+392.7	(l)	
[Co(H,NCH,CH,N	H ₂) ₂ (OOCCOO)](NO ₃) ₃	in DMSO	+404.9	+ 386.6	(1)	41

- (a) Data from ref. 920, ¹⁵N-labelled ammonia, 10.1 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to NH₄ in 5 M NH₄ NO₃ in 2 M HNO₃, +359.0 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).
- (b) Data from ref. 1216, 28.9 MHz ¹⁴N spectra, field parallel to sample tube, referenced to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (c) Data from ref. 1217, details as in footnote (a).
 - (d) Data from ref. 925, details as in footnote (a).
 - (e) Data from ref. 927, details as in footnote (a).
 - (f) Data from refs 926 and 929, details same as in footnote (a).
- (g) Data from ref. 349, ¹⁵N-labelled NH₃, ¹⁵N CPMAS spectra, spectrometer not reported, referenced to 5.6 M aqueous NH₄Cl, + 352.9 ppm from neat nitromethane (Table 2), uncorrected for bulk susceptibility effects.
- (h) Data from ref. 923, ¹⁵N-labelled ethylamine, 25.3 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to formamide, +268.6 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); originally reported vs fictitious ammonia standard taken at +112.6 ppm from the reference employed (the latter value corresponds to experimental conditions where the field is perpendicular to sample tube, Table 2).
 - (i) Data from ref. 839, 15N spectra, spectrometer not reported, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (j) See ref. 5, p. 400, and reference therein.
- (k) Data from ref. 1218, 100 MHz ¹H{¹⁴N} INDOR spectra, field perpendicular to sample tube, referenced originally to aqueous Co(NH₃)Cl₃, footnote (i); low-precision measurements, ±2 to ±3 ppm.
- (1) Data from ref. 1219, ¹⁵N-labelled NH₃ and ethylenediamine ligands, 6.06 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to aqueous NaNO₃, +3.5 ppm from neat nitromethane (Table 2), conversion scheme IIa (Table 1).

Table 33. Nitrogen shieldings in nitrosyl, thionitrosyl and nitride complexes

Compo	und		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Note
"Piano-	stool" type complex	ves .			
(n ⁵ -C ₆ H	l ₅)Cr(CO) ₂ (NO)		in CH ₂ Cl ₂	- 55	(a)
(n5-C,H	I_5)Cr(CO) ₂ (NS)		in CH ₂ Cl ₂	- 105	(a)
	l_5)Mo(SPh) ₂ (NO)		in CDCl ₃	- 36	(a)
L, W(C			in CH ₂ Cl ₂		(a)
	3,5-dimethylpyrazo	olvl)	2 2 2		()
$\dot{\mathbf{X}} =$				+4	
X =				-23	
L ₃ Mo(I	R^1)(R^2)(X)		in CH ₂ Cl ₂		(a)
	3,5-dimethylpyrazo	olyl)			
\mathbf{R}^{1}	\mathbb{R}^2	X		(NO/NS)	
CO	СО	NO			
CO	CO	NS		-64	
F	F	NO		-14	
Cl	Cl	NO		- 26	
I	I	NO		-46	
SPh	SPh	NO		-10	
OPh	OPh	NO		-11	
OEt	OEt	NO		-9	
NHPh	NHPh	NO		-2	
Cl	SPh	NO		– 17	
Cl	OPh	NO		-10	
Cl	OE t	NO		–17	
Cl	$NH-C_6H_4-p-Me$	NO		-10	
Cl	$NH-C_6H_4-p-Br$	NO		–11	
Cl	NHEt	NO		-10	
I	$NH-C_6H_4-p-Me$	NO		–13	
I	NHEt	NO		-11	
I	NHNMe ₂	NO		-7	

Table 33. —cont.

Compo	ound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
"Stron	gly bent" nitrosyls			
R ₂ N—C;	$\begin{cases} S & & \\ S & & \\ S & & \\ S & & \\ CO & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S & & \\ C & & \\ S$		NO groups	(b)
R = N	Ле	in CDCl ₃	-501.3	
R = E		in CDCl ₃	- 500.8	
R = i	Pr	in CD ₂ Cl ₂ in DMSO	- 526.9	
		III DIVISO	- 502.6	
trans-[C	$Co(NO)(H_2NCH_2CH_2NH_2)_2](CIO_4)_2$	_		
R X Me Ne	X R X X R Co N = Me	in acetone	-717.5; -727.6	(b)
X	R		NO or NS	
O	Me	in DMSO	-714.3	
0	Ph	in CDCl ₃	- 521.9	
U	FII	in DMSO in CD ₂ Cl ₂	- 723.0 - 724.7	
S	Me	in DMSO	- 724.7 - 672.1	
~	2.24	2.7100	V/21.2	

(b)

(b)

X	K,	R
O	Н	none
0 0	Me	none
0	H	5-Bu ^t
0	H	$3,5-(NO_2)_2$
NH	H	none

-769.7 (NO)

in DMSO

Table 33. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Linear and slightly bent nitrosyls $Na_{2}[Fe(CN)_{5}(NO)]$ $[FeRu_{3}(CO)_{12}(NO)]^{-}$ $Fe_{2}(SR)_{2}(NO)_{4}$	in H ₂ O in CH ₂ Cl ₂ in CD ₂ Cl ₂	+13.5 (NO) +9.9 (NO) -8.6	(b) (c) (d) (c)
NO R		C_{2h} -isomer C_{2v} -isomer	
R S R Mc Et (C_{2h}) NO i-Pr n-Bu i-Bu t-Bu t-Bu (C_{2v}) NO Ph CH ₂ Ph		-30.5 -23.1, -36.2 -31.4 -25.0, -36.1 -30.2 -26.7, -35.7 -31.4 -24.7, -36.0 -31.3 -24.5, -35.6 -38.8 -31.1, -37.1 -36.6 -28.8, -35.6 -34.2 -25.9, -39.4 -32.6 -28.7, -35.4	
$(Ph_3PNPPh_3)[Fe_4S_3(NO)_7]$ $(Ph_3PNPPh_3)[Fe_4Se_3(NO)_7]$ $Fe_4S_4(NO)_4$ $Fe_4Se_4(NO)_4$ $Mo(NO)(S_2CNR_2)_3$ R = Me R = Et	in CD ₂ Cl ₂ in CD ₂ Cl ₂ in CD ₂ Cl ₂ in CD ₂ Cl ₂ in CD ₂ Cl ₂ in CH ₂ Cl ₂	-7.7, -36.0, -76.1 (NO) -7.8, -29.5, -74.8 (NO) -12.8 -20.5 +14 (NO) +14 (NO)	(c) (c) (c) (c) (e)
$Mo(NS)(S_2CNR_2)_3$ $R = Me$	in CH ₂ Cl ₂	-42 (NS)	(e)

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
(PPh ₄)[W ₂ (N)Cl ₁₀]	in CH ₂ Cl ₂	-251.0 (N)	(h)
α -Si ₃ N ₄	solid state	\begin{pmatrix} + 309.4 \\ + 307.6 \\ + 297.0 \\ + 284.9 \end{pmatrix}	(i) (i) (i) (i)
β-Si ₃ N ₄	solid state	\begin{cases} + 306.9 \\ + 289.7 \end{cases}	(i) (i)

- (a) Data from refs 948 and 1220, 18.1 MHz ¹⁴N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects.
 - (b) Data from refs 947 and 1221, 15 N-labelled NO ligands, 40.5 MHz 15 N spectra, other details as in footnote (a).
 - (c) Data from refs 888, 895, 898 and 1222, ¹⁵N-labelled nitrosyl ligand, 36.5 MHz ¹⁵N spectra, calibration as in footnote (a).
- (d) Data from ref. 1223, ¹⁵N-labelled samples, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to nitromethane in CH₂Cl₂, +3.2 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); reported originally vs NH₃ standard taken at +379.6 ppm from the actual reference employed; we retrieved the original values and recalculated them as indicated above.
 - (e) Data from ref. 1224, details as in footnote (a).
- (f) Data from ref. 1225, 19.5 ¹⁴N spectra, field parallel to sample tube, referenced originally to NO₃ in aqueous NH₄NO₃, +4.0 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1).
- (g) Data from refs. 1226 and 1227, ¹⁵N-labelled NO ligands, 30.4 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to nitromethane in CHCl₃, +3.8 ppm from neat nitromethane (Table 2), conversion scheme IIb (Table 1); reported originally vs fictitious ammonia standard taken at +379.6 ppm from the reference actually employed; we retrieved the original values and recalculated them as indicated above.
- (h) Data from ref. 1228, spectrometer not specified, ¹⁵N-labelled nitrido moieties, ¹⁵N spectra, calibration as in footnote (a).
- (i) Data from ref. 415, ¹⁵N-labelled nitrides, 30.4 MHz ¹⁵N MAS spectra, referenced originally to NH₄ in solid NH₄NO₃, +358.4 ppm from neat nitromethane, uncorrected for bulk susceptibility effects.

Table 34. Nitrogen shieldings in some vitamins, drugs and medicines

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Vitamins			
Thiamine dihydrochloride	in H_2O/D_2O (4:1)	+ 135.5 (S—C=N ⁺) + 170.1 (Me—C=N) + 212.5 (NH ⁺ Me) + 272.2 (NH ₂)	(a)
Riboflavin		see Table 21	
Pyridoxol hydrochloride	in DMSO	+ 172.7	(a)
Pyridoxal hydrochloride	in DMSO	+ 166.9	(a)
Pyridoxamine dihydrochloride	in H_2O/D_2O (4:1)	+ 175.1 (NH ⁺) + 170.1 (CH ₂ NH ₃ ⁺)	(a)
Vitamin B ₁₂ , cyanocobalamin, Cb1(CN)			
12, 17	in 70% EtOH		
	CN moiety	+87.2	(a)
	•	(+261.7)	
		+ 263.0	
		+ 264.3	
	amide moieties	\(\frac{+265.6}{}	(a)
		+269.9	. ,
		+271.4	
		+273.1	
	in DMSO		
	amide	+ 264.4	(b)
	amide	+ 266.3	(b)
	f-amide	+ 267.4	(b)
	amide	+270.0	(b)
	e-amide	+270.4	(b)

Table 34. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
	b-amide	+ 272.8	(b)
	d-amide	+273.5	(b)
	0.01 м in H ₂ O		` ,
	benzimidazole		
	moiety		
	(ribose-bound N)	+216.0	(b)
	(Co-bound N)	+ 192.5	(b)
	CN moiety	+91.3	(b)
	$0.01 \mathrm{M}$ in $0.52 \mathrm{M}$ H ₂ SO ₄		•
	benzimidazole		
	moiety		
	(ribose-bound N)	+ 207.9	(b)
	(Co-bound N)	+ 220.8	(b)
	CN moiety	+82.6	(b)
Dicyanocobalamine, Cbl(CN) ₂			(b)
	0.01 м in 0.1 м NaCN		
	α-CN moiety	+95.8	
	β-CN moiety	+ 102.6	
	benzimidazole		
	moiety		
	(ribose-bound N)	+ 218.9	
	(other, pendant N)	+ 147.9	
	amide	+ 264.3	
	amide	+ 266.6	
	f-amide	+ 267.5	
	amide	+ 269.0	
	e-amide	+ 271.6	

Nicotinic acid Nicotinamide Panthotenic acid Calcium panthotenate Dexpanthenol p-Aminobenzoic acid Biotin Anaesthetics	b-amide d-amide in DMSO in DMSO in DMSO in DMSO in DMSO in DMSO in DMSO in DMSO in DMSO in DMSO	+ 272.3 + 272.4 + 65.4 + 65.2 (—N=) + 275.1 (CONH ₂) + 265.9 + 262.6 + 264.3 + 315.6 + 290.2 (SCHCHNH) + 299.5 (SCH ₂ CHNH)	(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)
PhCOO MeNH* C1-	in DMSO/H ₂ O (3:1)		
R = COOMe (cocaine hydrochloride) R = H (tropacocaine hydrochloride)		+ 314.0 + 309.2	(c) (c)
H ₂ N—COOEt (benzocaine)	in CDCl ₃ in DMSO	+317.7 +310.7	(c)
HO $H_2N \longrightarrow COOMe$ (ortoform)	in DMSO	+ 330.4	(c)
H ₂ N—COOCH ₂ CH ₂ NH ⁺ Et ₂ Cl ⁻ (procaine hydrochloride)	in DMSO	+ 324.3 (NH ⁺) + 306.8 (NH ₂)	(c) (c)

Table 34. —cont.

(pyrrocaine hydrochloride)

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
BuNH—COOCH ₂ CH ₂ NH ⁺ Me ₂ Cl ⁻ (tetracaine hydrochloride)	in DMSO	+ 339.9 (NH ⁺) + 324.0 (BuNH)	(c) (c)
Me PhCOO—C —CH2NH+Me2Cl- Et (stovaine hydrochloride)	in DMSO	+ 325.3	(c)
PhO- CH_2 — $CH_2CH_2CH_2$ - NH O Cl^- (fomocaine hydrochloride)	in DMSO/H ₂ O (3:1)	+ 329.0	(c)
CH ₂ -OPh			
CH ₂ CH ₂ CH ₂ -NH O CI	in DMSO/H ₂ O (3:1)	+ 329.0	(c)
(ortofomocaine hydrochloride)			
NHCOCH ₂ —NHCOCH ₂ —Cl	in CDCl ₃	+ 249.5 (NHCO) + 317.7 (NH)	(c) (c)
Me			

+ 246.7 + 245.3

 $R = -CH_2 - CH = CH_2$ (diocaine hydrochloride)

R = Et (fenacaine hydrochloride)

Table 34. —cont.

Compound		Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
Antiepileptics	ţ			
o≈NH~o		in DMSO	. 226 7	
R NH		R = Et (phenobarbital R = Me (heptobarbital)	+ 226.7 + 229.8	(d) (d)
ONH O	(phenytoin)	in DMSO	+ 233.7 (CONHCO) + 271.7 (CONHC)	(d) (d)
O NMe O Me NH Ph	(mephenytoin)	in DMSO	+ 241.0 (NMe) + 281.5 (NH)	(d) (d)
O NMe O Me Me	(trimethadione)	in DMSO	+ 244.4	(d)
O NMe O	(phensuximide)	in DMSO	+210.6	(d)
O NMe O	(ethosuximide)	in DMSO	+ 205.4	(d)

426

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
$ \begin{array}{c c} R^1 & O \\ \downarrow & \downarrow & \\ R^3 & \longrightarrow & R^4 \end{array} $	in DMSO		(d)
R^1 R^2 R^3 R^4			
Me Ph Cl H	diazepam	+ 52.8 (=N) + 253.0 (NMe)	
Me Ph Cl OOCCH ₂ CH ₂ COOH	oxazepam	+ 56.7 (=N)	
H Ph NO ₂ H	succinate nitrazepam	+ 244.4 (NMe) + 54.4 (=N) + 235.0 (NH) + 12.2 (NO ₂)	
H o-Cl-C ₆ H ₅ NO ₂ H	clonazepam	+45.5 (=N) +234.1 (NH) +12.5 (NO ₂)	
CONH ₂			
(carbamazepine)	in DMSO	+ 266.3 (N—CO) + 302.7 (CONH ₂)	(d) (d)
Carbamates			
Ethyl urethan Meprobamate Carlsoprodole	in CDCl ₃ in DMSO in CDCl ₃	+ 307.5 (NH ₂) + 304.5 (NH ₂) + 308.0 (NH ₂) + 280.3 (NH)	(e) (e) (e) (e)

Diperodon (Diothane)	in DMSO	+ 329.0 (N)	(e)	
		+274.0 (NH)	(e)	
		+272.8 (NH)	(e)	
Bendiocarb	in CDCl ₂	+310.1 (NH)	(e)	
Physostygmine salicylate	in DMSO	+316.5 (N)	(e)	
, ,,,		+310.4 (H)	(e)	
		+ 308.3 (NH)	(e)	
Carbachole	in DMSO/ H_2O , 3:1	$+331.1 (N^{+})$	(e)	
		$+302.1 \text{ (NH}_2)$	(e)	
Neostygmine bromide	in DMSO/ H_2O , 3:1	$+321.7 (N^{+})$	(e)	
1.0001, 80	2 20,	+308.1 (N)	(e)	z
Pyridostygmine bromide	in DMSO/ H_2O , 3:1	+306.7 (N)	(e)	Ħ
- ,, g		$+175.3 \text{ (ring N}^+\text{)}$	(e)	Ö
Pentacaine chloride	in CDCl ₃	+311.4 (NH ⁺)	(e)	E
		+ 270.3 (NH)	(e)	Z
Heptacaine chloride	in CDCl ₃	+ 326.2 (NH ⁺)	(e)	Ş
Troptadame emerica	m e2 e13	+ 286.2 (NH)	(e)	∌
Carbisocaine chloride	in CDCl ₃	+ 324.1 (NH)	(e)	SF
caroisocame emeride	in coci,	+ 284.8 (NH)	(e)	NITROGEN NMR SPECTROSCOPY
		1 20 1.0 (1111)	(0)	걸
Analgesics and antipyretics				8
Salicylamide	in DMSO	+ 273.8	(f)	Š
Phenacetin	in DMSO	+ 247.0	(f)	ğ
Benorilate	in DMSO	+ 246.9	(f)	¥
Paracematol	in DMSO	+ 246.8	(f)	
Phenazone	in DMSO	+ 242.8 (NMe)	(f)	
		+ 196.4 (CO-N)	(f)	
Aminophenazone	in DMSO	$+365.5 (NMe_2)$	(f)	
•		+ 255.3 (NMe)	(f)	
		+ 198.8 (CO-N)	(f)	
4-Aminophenazone	in DMSO	+352.1 (NH2)	(f)	
<u> </u>		$+351.8 (NH_2)$	(f)	_
		+ 260.1 (NMe)	(f)	427
		+ 199.6 (CO-N)	(f)	?7
		1 155.0 (88 1.1)	(-)	

Table 34. —cont.

Compound	Solution or state	Nitrogen shielding (ppm) referred to neat nitromethane	Notes
4-Isopropylaminophenazone	in DMSO	+ 323.5 (N ⁺)	(f)
hydrochloride		+ 242.6 (NMe)	(f)
ny di veniories		+ 198.6 (CO-N)	(f)
Phenylbutazone	in CDCl ₃	+216.0	(f)
Ketazone	in CDCl ₃	+ 215.7	(f)
	in DMSO	+215.1	(f)
Benzopyrazone	in CDCl ₃	+ 215.0	(f)
Tribuzone	in CDCl ₃	+ 215.6	(f)
Cinchophen	in DMSO	+67.7	(f)
Indomethacin	in DMSO	+ 206.9	(f)
Diclofenac sodium	in DMSO	+ 294.4	(f)
Mefenamic acid	in DMSO	+ 289.5	(f)
Tolfenamic acid	in DMSO	+ 289.1	(f)
4-Nitrofenetol	in DMSO	$+10.0 (NO_2)$	(f)
p-Phenetidine	in DMSO	+ 325.6	(f)
Salacetamide	in DMSO	+214.8	(f)
HIV and MuLV replication inhibitors AZT and AZU	see Table 14		

⁽a) Data from ref. 808, 10.095 MHz ¹⁵N spectra, field perpendicular to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; ca. 20% w/w or saturated solutions; vitamin B₁₂ spectrum was measured at 40.5 MHz, field parallel to sample tube.

⁽b) Data from refs. 882, 1229, 1230 and 1231, ¹⁵N-labelled samples, 30.4, 40.4 and 50.7 MHz ¹⁵N spectra, field parallel to sample tube, referenced originally to neat nitromethane, uncorrected for bulk susceptibility effects; reported originally vs fictitious ammonia standard taken at + 380.2 ppm from neat nitromethane; structural formulae and amide group designation are given in ref. 1229.

⁽c) Data from ref. 778, details as in footnote (a).

⁽d) Data from ref. 1232, details as in footnote (a).

⁽e) Data from ref. 1233, details as in footnote (a); also 7.196 MHz ¹⁴N spectra.

⁽f) Data from ref. 1234, details as in footnote (a).

Addendum on ¹⁴N NQR and ENDOR

While nuclear quadrupole resonance (NQR) and electron-nuclear double resonance (ENDOR) are not quite within the scope of the present book, we present here, as was done in our earlier accounts of nitrogen NMR,^{4,5} a comprehensive list of recent references in the field of ¹⁴N NQR and ENDOR: 55–57, 60, 62, 63, 65, 66, 206, 307, 313, 314, 317, 431, 464, 467, 680, 748, 874, 958, 979, 993, 1235–1331.

The references quoted refer to NQR, with the exception of refs 680, 1256, 1275, 1276, 1321, which are relevant to ENDOR.

This Page Intentionally Left Blank

References

- 1. M. Witanowski and G. A. Webb, Annu. Rep. NMR Spectrosc. 1972, 5A, 395.
- 2. M. Witanowski and G. A. Webb (eds), Nitrogen NMR, Plenum Press, London, 1973.
- 3. M. Witanowski, L. Stefaniak and G. A. Webb, Annu. Rep. NMR Spectrosc., 1977, 7, 117.
- 4. M. Witanowski, L. Stefaniak and G. A. Webb, Annu. Rep. NMR Spectrosc., 1981, 11B,
- 5. M. Witanowski, L. Stefaniak and G. A. Webb, Annu. Rep. NMR Spectrosc., 1986, 18, 1.
- 6. I. Ando and G. A. Webb, Theory of NMR Parameters, Academic Press, London, 1983.
- 7. M. Schindler, J. Chem. Phys., 1988, 88, 7638.
- 8. U. Fleischer and M. Schindler, Chem. Phys., 1988, 120, 103.
- 9. M. Schindler, J. Am. Chem. Soc., 1987, 109, 5950.
- 10. M. Schindler, Magn. Reson. Chem., 1988, 26, 394.
- 11. M. Schindler, J. Am. Chem. Soc., 1988, 110, 6623.
- 12. R. Ditchfield, Mol. Phys., 1974, 27, 789.
- 13. C. Giessner-Prettre, J. Biomol. Struct. Dyn., 1984, 2, 233.
- 14. S. Ferchiou and C. Giessner-Prettre, J. Magn. Reson., 1985, 61, 262.
- 15. C. Giessner-Prettre and B. Pullman, Quart. Rev. Biophys., 1987, 20, 113.
- 16. D. B. Chesnut and C. K. Foley, J. Chem. Phys., 1966, 84, 852.
- 17. J. A. Pople, Discuss. Faraday Soc., 1962, 34, 7.
- E. Bojarska-Olejnik, L. Stefaniak, M. Witanowski, B. T. Hamdi and G. A. Webb, Magn. Reson. Chem., 1985, 23, 166.
- W. Schilf, L. Stefaniak, M. Witanowski and G. A. Webb, Magn. Reson. Chem., 1985, 23, 181.
- W. Schilf, L. Stefaniak, M. Witanowski and G. A. Webb, Magn. Reson. Chem., 1985, 23, 784.
- L. Kaczmarek, P. Nantka-Namirski, L. Stefaniak, G. A. Webb, R. Davoust and J. J. Basselier, Magn. Reson. Chem., 1985, 23, 853.
- W. Schilf, L. Stefaniak, M. Witanowski, G. A. Webb and S. Braun, Spectrosc. Int. J., 1985, 4, 103.
- E. Bojarska-Olejnik, L. Stefaniak, M. Witanowski and G. A. Webb, Bull. Pol. Acad. Sci.: Chem., 1985, 33, 375.
- 24. W. Schilf, L. Stefaniak, M. Witanowski and G. A. Webb, J. Mol. Struct., 1985, 140, 311.
- E. Bojarska-Olejnik, L. Stefaniak, M. Witanowski and G. A. Webb, Magn. Reson. Chem., 1986, 24, 911.
- E. Bojarska-Olejnik, L. Stefaniak, M. Witanowski and G. A. Webb, Bull. Pol. Acad. Sci.: Chem., 1986, 34, 289.
- L. Stefaniak, M. Witanowski, G. A. Webb and W. B. Smith, *Bull. Pol. Acad. Sci.: Chem.*, 1987, 35, 301.
- M. Witanowski, J. Sitkowski, W. Sicińska, S. Biernat and G. A. Webb, Magn. Reson. Chem., 1989, 27, 88.
- E. Bojarska-Olejnik, L. Stefaniak, M. Witanowski and G. A. Webb, Bull. Chem. Soc. Jpn, 1986, 59, 3263.
- M. Witanowski, J. Sitkowski, S. Biernat, B. Kamieński, B. T. Hamdi and G. A. Webb, J. Magn. Reson., 1985, 63, 354.
- M. Witanowski, J. Sitkowski, S. Biernat, B. Kamieński, B. T. Hamdi and G. A. Webb, Magn. Reson. Chem., 1985, 23, 748.

- M. Witanowski, J. Sitkowski, S. Biernat, L. V. Sudha and G. A. Webb, Magn. Reson. Chem., 1987, 25, 725.
- 33. M. Witanowski, W. Sicińska and G. A. Webb, Magn. Reson. Chem., 1989, 27, 380.
- 34. M. Witanowski, W. Sicińska, S. Biernat and G. A. Webb, J. Magn. Reson., 1989, 83, 351.
- 35. T. Asakura, H. Yoshimizu, S. Ando and I. Ando, J. Mol. Struct., 1988, 168, 135.
- 36. X. You and W. Wu, Magn. Reson. Chem., 1987, 25, 860.
- 37. T. Berstein and H. Pfeifer, Z. Phys. Chem., Leipzig, 1985, 266, 94.
- 38. M. Comeau, M. T. Beraldin, E. C. Vauthier and S. Fliszar, Can. J. Chem., 1985, 63, 3226.
- 39. K. A. Jorgensen, J. Chem. Soc. Perkin Trans. II, 1987, 885.
- 40. S. Li and D. B. Chesnut, Magn. Reson. Chem., 1985, 23, 625.
- 41. N. F. Ramsey, Phys. Rev., 1953, 91, 903.
- 42. J. Kowalewski, Annu. Rep. NMR Spectrosc., 1982, 12, 81.
- 43. J. Geertsen, J. Oddershede and G. E. Scuseria, J. Chem. Phys., 1987, 87, 2138.
- 44. V. Galasso, Chem. Phys. Lett., 1988, 145, 259.
- Y. Kuroda, Y. Fujiwara, A. Kwae and K. Matsushita, J. Chem. Soc. Perkin Trans. II 1986, 675.
- 46. Y. Kuroda, Y. Fujiwara and K. Matsushita, J. Chem. Soc. Perkin Trans II, 1985, 1533.
- 47. R. Radeglia, R. Wolf, T. Steiger and S. Simova, Z. Phys. Chem. Leipzig, 1984, 265, 1984.
- 48. T. Steiger and R. Radeglia, J. Prakt. Chem., 1984, 326, 145.
- S. M. Susskind, G. E. Scuseria and R. H. Contreras, Z. Phys. Chem. Leipzig, 1985, 266, 395.
- B. Thomas, A. John, A. Pfützner, G. Grossmann and E. Herrmann, Z. Anorg. Allg. Chem., 1988, 525, 7.
- E. Kupče, E. Liepins, O. Pudova and E. Lukevics, J. Chem. Soc. Chem. Commun., 1984, 581.
- 52. F. B. Mallory and C. W. Mallory, J. Am. Chem. Soc., 1985, 107, 4816.
- 53. V. M. S. Gil and W. Von Philipsborn, Magn. Reson. Chem., 1989, 27, 409.
- 54. G. E. Scuseria and H. F. Schaefer, J. Chem. Phys., 1987, 87, 4020.
- 55. D. Sundholm, P. Pyykkö, L. Laaksonen and A. J. Sadlej, Chem. Phys., 1986, 101, 219.
- 56. T. K. Ha, Chem. Phys. Lett., 1984, 107, 117.
- 57. T. K. Ha, Z. Naturforsch., 1986, 41a, 163.
- P. L. Cummins, G. B. Bocskay, N. S. Hush and R. Ahlrichs, J. Chem. Phys., 1987, 86, 6908.
- 59. P. L. Cummins, G. B. Bocskay and N. S. Hush, Chem. Phys., 1987, 115, 325.
- 60. J. Murgich and Y. Aray, J. Chem. Phys., 1987, 87, 3580.
- 61. Y. Aray, R. Gomperts, J. Saavedra, C. Urdaneta and J. Murgich, *Theor. Chim. Acta*, 1988, 73, 279.
- 62. M. H. Palmer, D. Stephenson and J. A. S. Smith, Chem. Phys., 1985, 97, 103.
- M. H. Palmer, M. M. I. Haq, D. Stephenson and J. A. S. Smith, Chem. Phys. Lett., 1986, 127, 615.
- 64. M. H. Palmer, Chem. Phys., 1988, 127, 335.
- 65. R. D. Brown and M. P. Head-Gordon, Mol. Phys., 1987, 61, 1183.
- 66. M. Eckert-Maksic and Z. B. Maksic, J. Mol. Struct., 1987, 153, 133.
- 67. M. Jaszuński, A. Rizzo and D. L. Yeager, Chem. Phys., 1989, 136, 385.
- 68. A. E. Hansen and T. D. Bouman, J. Chem. Phys., 1989, 91, 3552.
- 69. D. B. Chesnut and K. D. Moore, J. Comput. Chem., 1989, 10, 648.
- 70. T. D. Bouman and A. E. Hansen, J. Quantum. Chem., 1989, 23, 381.
- 71. J. Oddershede and J. Geerstsen, J. Chem. Phys., 1990, 92, 6036.
- 72. I. Paidarova, J. Komasa and J. Oddershede, Mol. Phys., 1991, 72, 559.
- 73. V. Galasso, J. Magn. Reson., 1984, 58, 311.

- 74. A. Shoji, T. Ozaki, T. Fujito, K. Deguchi and I. Ando, Macromolecule, 1987, 20, 2441.
- M. Gruner, D. Pfeifer, H. G. O. Becker, R. Radeglia and J. Epperlein, J. Prakt. Chem., 1985, 327, 63.
- 76. R. E. Overill and V. R. Saunders, Chem. Phys. Lett., 1984, 106, 197.
- T. Axenrod, X. H. Huang, D. Tufaro, C. Watnick and G. A. Webb, *Magn. Reson. Chem.*, 1988, 26, 960.
- 78. M. H. Palmer, Chem. Phys., 1987, 115, 207.
- 79. M. H. Palmer, A. J. Blake and R. O. Gould, Chem. Phys., 1987, 115, 219.
- 80. Y. Aray, R. Comperts, J. Saavedra, C. Urdaneta and J. Murgich, *Theor. Chim. Acta*, 1988, 73, 279.
- 81. M. Witanowski, W. Sicińska and S. Biernat, Spectrosc. Int. J., 1989, 7, 305.
- Z. H. Khalil, A. A. Abidel-Hafez, A. A. Geies and A. M. K. El-Dean, Bull. Chem. Soc. Jpn, 1991, 64, 668.
- 83. B. Wrackmeyer, Spectrochim. Acta, 1984, 40A, 963.
- 84. J. M. Robert and R. F. Evilia, J. Am. Chem. Soc., 1985, 107, 3733.
- 85. L. A. Allen, T. E. Glass and H. C. Dorn, Anal. Chem., 1988, 60, 390.
- 86. J. M. Roberts and R. F. Evilia, Anal. Chem., 1988, 60, 2035.
- 87. R. F. Evilia, J. M. Robert and S. L. Whittenburg, J. Phys. Chem., 1989, 93, 6550.
- M. Witanowski, J. Sitkowski, S. Biernat, L. V. Sudha and G. A. Webb, Magn. Reson. Chem., 1987, 25, 725.
- 89. W. Sicińska, L. Sefaniak, M. Witanowski and G. A. Webb, J. Mol. Struct., 1987, 160, 179.
- M. Witanowski, J. Sitkowski, W. Sicińska, S. Biernat and G. A. Webb, Magn. Reson. Chem., 1989, 27, 88.
- 91. C. M. Adamus and W. Philipsborn, Magn. Reson. Chem., 1985, 23, 130.
- 92. D. A. Laude Jr., R. W. K. Lee and C. L. Wilkins, Anal. Chem., 1985, 57, 1281.
- 93. A. Péneau, A. H. Fuchs, L. Guibé and H. Szwarc, C. R. Acad. Sci., 1984, 298, 551.
- 94. A. W. Bevan, G. C. K. Roberts, J. Feeney and L. Kuyper, Eur. Biophys. J., 1985, 11, 211.
- 95. G. B. Fields, C. G. Fields, J. Petefish, H. E. Van Wart and T. A. Cross, *Proc. Natl Acad. Sci. USA*, 1988, 85, 1384.
- 96. H. Senn, A. Eugster, G. Otting, F. Suter and K. Wüthrich, Eur. Biophys. J., 1987, 14, 301.
- 97. D. H. Live, D. Cowburn and E. Breslow, Biochemistry, 1987, 26, 6415.
- 98. G. Ortiz-Polo, R. Krishnamoorthi, J. L. Markley, D. H. Live, D. G. Davis and D. Cowburn, J. Magn. Reson., 1986, 68, 303.
- 99. P. E. Hansen and H. J. Jakobsen, Org. Magn. Reson., 1984, 22, 668.
- H. J. Jakobsen, H. Bildsoe, S. Donstrup and O. W. Sorensen, J. Magn. Reson., 1984, 57, 324.
- Y. Hiltunen, J. Jokisaari, J. Lounila and A. Pulkkinen, J. Am. Chem. Soc., 1989, 111, 3217
- 102. E. Sletten, J. Sletten and N. A. Froystein, Acta Chim. Scand., 1988, A42, 413.
- B. J. Stockman, W. M. Westler, E. S. Mooberry and J. L. Markley, *Biochemistry*, 1988, 27, 136.
- 104. K. A. Thorn, D. W. Folan, J. B. Arterburn, M. A. Mikita and P. Maccarthy, The Science of the Total Environment, 1989, 81/82, 209.
- E. Haslinger, M. Schlederer, W. Robien and P. Wolschann, Monats. Chem., 1984, 115, 1345.
- 106. F. Seela, H. Rosemeyer, A. Biesewig and T. Jurgens, Nucleos. Nucleot., 1988, 7, 581.
- L. Stefaniak, G. A. Webb, C. Brevard, M. Bourdonneau, R. Lejeune, L. Thunus and C. L. Lapiére, Magn. Reson. Chem. 1985, 23, 790.
- 108. D. Cossette and D. Vocelle, Can. J. Chem., 1987, 65, 661.
- 109. G. E. Hawkes, H. Molinari, S. Singh and Lu-Yun Lian, J. Magn. Reson., 1987, 74, 188.

- 110. T. Asakura, H. Yoshimizu and F. Yoshizawa, Macromolecules, 1988, 21, 2038.
- 111. H. R. Kricheldorf, W. E. Hull and D. Müller, Macromolecules, 1985, 18, 2135.
- 112. H. R. Kricheldorf, D. Müller and W. E. Hull, Biopolymers, 1985, 24, 2113.
- 113. H. Kricheldorf, D. Müller and W. E. Hull, Int. J. Biol. Macromol., 1986, 8, 20,
- 114. G. D. Henry and B. D. Sykes, Biochem. Cell. Biol., 1990, 68, 318.
- 115. G. D. Henry and B. D. Sykes, Biochemistry, 1990, 29, 6303.
- 116. J. Plavec and J. Kobe, Nucleos. Nucleot., 1991, 10, 249.
- W. Skawinski, J. Flisak, A. C. Chung, F. Jordan and R. Mendelson, J. Label. Comp. Radiopharm., 1990, 28, 1179.
- E. E. Liepins, R. S. El'kinson, J. P. Piskunova and A. V. Erereev, Khim. Geterosikl. Soedin., 1986, 1181.
- 119. H. Hilpert and R. Hollenstein, Helv. Chim. Acta, 1986, 69, 136.
- 120. B. Wrackmeyer, Z. Naturforsch., 1986, 41b, 59.
- 121. B. Clement and T. Kämpchen, Arch. Pharm., 1987, 320, 566.
- 122. G. L'abbe', M. A. Persoons and S. Toppet, Magn. Reson. Chem., 1987, 25, 362.
- G. Remaud, J. Kjellberg, H. Bazin, N. G. Johansson and J. Chattopadhyaya, Tetrahedron, 1986, 42, 5073.
- C. Glemarec, G. Remaud, H. Bazin, X. X. Zhou and J. Chattopadhyaya, Nucleic Acids Res. (Symp. Ser.) 1987, 73.
- 125. W. Holzer and W. von Philipsborn, Magn. Reson. Chem., 1989, 27, 511.
- 126. H. Rosemeyer and F. Seela, Helv. Chim. Acta, 1988, 71, 1573.
- 127. H. Falk and N. Müller, Magn. Res. Chem., 1985, 23, 353.
- 128. G. Tóth, A. Szöllösy, I. Hermecz, A. Horváth and Z. Mészáros, J. Chem. Soc. Perkin Trans. II, 1985, 1881.
- 129. B. Wrackmeyer, Z. Naturforsch., 1984, 39b, 533.
- 130. B. Wrackmeyer, J. Magn. Reson., 1985, 61, 536.
- 131. M. F. Grenier-Loustalot and P. Grenier, J. Polym. Sci. Polym. Chem. Ed., 1984, 22, 4011.
- E. Kupce, E. Liepins, A. Lapsina, I. Urtāne, G. Zelčāns and E. Lukevics, J. Organomet. Chem., 1985, 279, 343.
- I. D. Kalikhman, O. B. Bannikova, L. P. Petukhov, W. A. Pestunovich and M. G. Voronkov, Dokl. Akad. Nauk CCCP, 1986, 287, 870.
- B. Wrackmeyer, S. Kerschl, C. Stader and K. Horchler, Spectrochim. Acta, 1986, 42A, 1113.
- 135. W. Maringgele, D. Bromm and A. Meller, Tetrahedron, 1988, 44, 1053.
- G. C. van Stein, G. van Koten, K. Vrieze, C. Brevard and A. L. Spek, J. Am. Chem. Soc., 1984, 106, 4486.
- 137. G. C. van Stein, G. van Koten, K. Vrieze and C. Brevard, Inorg. Chem., 1984, 23, 4269.
- G. C. van Stein, G. van Koten, K. Vrieze, A. L. Spek, E. A. Klop and C. Brevard, *Inorg. Chem.*, 1985, 24, 1367.
- 139. P. S. Pregosin, R. Rüedi and C. Anklin, Magn. Reson. Chem., 1986, 24, 255.
- 140. L. Carlton and M. P. Belciug, J. Organomet. Chem., 1989, 378, 469.
- I. D. Kalikhman, O. B. Bannikova, A. V. Kalinin, B. N. Khasanov, S. L. Ioffe, V. A. Tartakovskij and M. G. Voronkov, Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 463.
- 142. J. Elguero, R. Faure and J. Llinares, Spectrosc. Lett., 1987, 20, 149.
- 143. B. Wrackmeyer, S. M. Frank, M. Herberhold, A. Simon and H. Borrmann, J. Am. Chem. Soc., 1991, 2607.
- 144. A. Lyčka, J. Jirman, J. Holeček and J. Tká, J. Organomet. Chem., 1989, 372, 327.
- 145. T. J. Bastow and S. N. Stuart, Z. Naturforsch., 1990, 45a, 459.
- 146. Ad Bax, Chien-Hua Niu and D. Live, J. Am. Chem. Soc., 1984, 106, 1150.
- 147. C. Glemarec, G. Remaud and J. Chattopadhyaya, Magn. Reson. Chem., 1988, 26, 307.

- 148. C. Glemarec, G. Remaud and J. Chattopadhyaya, Magn. Reson. Chem., 1988, 26, 435.
- 149. S. K. Sarkar and Ad Bax, J. Magn. Reson., 1985, 62, 109.
- E. Kupče, E. Liepinš, E. Lukevics and B. Astapov, J. Chem. Soc. Dalton Trans., 1987, 1593.
- 151. C. Stader and B. Wrackmeyer, J. Magn. Reson., 1987, 72, 544.
- 152. B. Wrackmeyer, K. Schamel and M. Herberhold. Z. Naturforsch., 1989, 44b, 55.
- 153. C. Stader and B. Wrackmeyer, Z. Naturforsch., 1987, 42b, 1515.
- 154. J. Elguero, R. Faure and J. Llinares, Spectrosc. Lett., 1987, 20, 149.
- S. J. Berners Price, M. J. DiMartino, D. T. Hill, R. Kuroda, M. A. Mazid and P. J. Sadler, Inorg. Chem., 1985, 24, 3425.
- 156. A. Costa, M. Tato and R. S. Matthews, Magn. Reson. Chem., 1986, 24, 547.
- 157. X. Gao and R. A. Jones, J. Am. Chem. Soc., 1987, 109, 1275.
- 158. J. Vervoort, F. Müller, J. LeGall, A. Bacher and H. Sedlmaier, Flavins Flavoproteins Proc. 8th Int. Symp. 1984, 269.
- G. S. Smith, K. D. Berlin, S. A. Zisman, E. M. Holt, V. A. Green and D. von der Helm, *Phosph. Sulph.*, 1988, 39, 91.
- 160. R. A. Schiksnis, M. J. Bogusky, P. Tsang and S. J. Opella, Biochemistry, 1987, 26, 1373.
- M. J. Bogusky, R. A. Schiksnis, G. C. Leo and S. J. Opella, J. Magn. Reson., 1987, 72, 186.
- H. A. J. Holterman, A. van Veldhuizen and H. C. van der Plas, J. Org. Chem., 1986, 51, 1147.
- 163. J. P. Declercq, J. Heterocydre Chem., 1991, 28, 477.
- 164. R. L. Baxter and S. L. Greenwood, J. Chem. Soc., Chem. Commun., 1986, 175.
- H. J. Jacobsen, U. B. Sorensen, H. Bildsoe and O. W. Sorensen, J. Magn. Reson., 1985, 63, 601.
- 166. K. V. Schenker and W. von Philipsborn, J. Magn. Reson., 1985, 61, 294.
- 167. M. H. Levitt, J. Chem. Phys., 1991, 94, 30.
- 168. B. K. John, D. Plant, S. L. Heald and R. Hurd, J. Magn. Reson., 1991, 94, 664.
- 169. Bhim Sen Saraswat and J. Mason, Polyhedron, 1986, 5, 1449.
- 170. G. E. Hawkes, Lu Yun Lian and E. W. Randall, J. Magn. Reson., 1984, 56, 539.
- G. E. Hawkes, Lu-Yun Lian, E. W. Randall, K. D. Sales and E. H. Curzon, Eur. J. Biochem., 1987, 166, 437.
- 172. H. Kessler, A. Müller and K. H. Pook, Liebigs Ann. Chem., 1989, 903.
- 173. X. X. Zhu, F. Sauriol and G. R. Brown, Can. J. Spectrosc., 1988, 33, 63.
- 174. H. Kessler, H. R. Loosli and H. Oschkinat, Helv. Chim. Acta, 1985, 68, 661.
- 175. H. Kessler and M. Bernd, Liebigs Ann. Chem., 1985, 1145.
- 176. B. Wrackmeyer, E. Kupče and A. Schmidpeter, Magn. Reson. Chem., 1991, 29, 1045.
- M. J. Bogusky, P. Leighton, R. A. Schiksnis, A. Khoury, P. Lu and S. J. Opella, *J. Magn. Reson.*, 1990, 86, 11.
- 178. S. Roy, M. Z. Papastavros, V. Sanchez and A. G. Redfield, Biochemistry, 1984, 23, 4395.
- 179. M. Jarema and P. B. Moore, NATO ASI, 1986, 110, 175.
- M. G. Bogusky, P. Tsang and S. J. Opella, *Biochem. Biophys. Res. Commun.*, 1985, 127, 540.
- 181. H. P. Juretschke and A. Lapidot, Eur. J. Biochem., 1985, 147, 313.
- 182. H. Kessler, C. Griesinger and K. Wanger, J. Am. Chem. Soc., 1987, 109, 6927.
- 183. S. Bulusu, T. Axenrod, B. Liang and L. Yuan, Magn. Reson. Chem., 1991, 29, 168.
- 184. S. Bulusu, T. Axenrod, B. Liang, Y. He and L. Yuan, Magn. Reson. Chem., 1991, 29, 1018.
- 185. Ad Bax, Bull. Magn. Reson., 1985, 7, 167.
- 186. L. Mueller, R. A. Schiksnis and S. J. Opella, J. Magn. Reson., 1986, 66, 379.

- 187. G. Otting and K. Wüthrich, J. Magn. Reson., 1988, 76, 569.
- 188. H. Molinari and S. Mammi, J. Magn. Reson., 1990, 90, 355.
- 189. A. De Marco, L. Zetta and C. Anklin, Gazz. Chim. Ital., 1988, 118, 295.
- J. P. Gerothanassis, M. Bourdonneau, T. Karayannis, M. Sakarellos-Daitsiotis and C. Sakarellos, J. Magn. Reson., 1988, 80, 309.
- 191. V. Sklenář and Ad Bax, J. Magn. Reson., 1987, 71, 379.
- 192. S. K. Sarkar, J. D. Glickson and Ad Bax, J. Am. Chem. Soc., 1987, 109, 6814.
- D. H. Live, J. Radhakrishnan, V. Misra and D. J. Patel, J. Am. Chem. Soc., 1991, 113, 4687.
- 194. G. B. Henderson, J. Glushka, D. Cowburn and A. Cerami, J. Chem. Soc. Perkin Trans. I, 1990, 911.
- 195. J. Glushka and D. Cowburn, J. Am. Chem. Soc., 1987, 109, 7879.
- 196. J. Glushka and D. Cowburn, J. Am. Chem. Soc., 1987, 109, 7879.
- 197. J. Glushka, M. Lee, S. Coffin and D. Cowburn, J. Am. Chem. Soc., 1989, 111, 7716.
- D. C. Muchmore, L. P. McIntosh, C. B. Russel, D. E. Anderson and F. W. Dahlquist, Methods in Enzymology, 1989, 117, 44.
- L. P. McIntosch, A. J. Wand, D. F. Lowry, A. G. Redfield and F. W. Dahlquist, Biochemistry, 1990, 29, 6341.
- A. G. Redfield, L. P. McIntosch and F. W. Dahlquist, Arch. Biol. Med. Exp. 1989, 22, 129.
- 201. Byung-Ha Oh, E. S. Mooberry and J. L. Markley, Biochemistry, 1990, 29, 4004.
- 202. Byunh-Ha Oh and J. L. Markley, Biochemistry, 1990, 29, 3993.
- H. Fritz, H. Kristinsson, M. Mollenkopf and T. Winkler, Magn. Reson. Chem., 1990, 28, 331.
- 204. D. M. LeMaster and F. M. Richards, Biochemistry, 1985, 24, 7263.
- R. H. Griffey, D. R. Davis, Z. Yamaizumi, S. Nishimura, B. L. Hawkins and C. D. Poulter, J. Biol. Chem., 1986, 261, 12074.
- 206. R. Ambrosetti, R. Angelone and J. Murgich, Z. Naturforsch., 1986, 41a, 299.
- R. H. Griffey, D. Davis, Z. Yamaizumi, S. Nishimura, Ad Bax, B. Hawkins and C. D. Poulter, J. Biol. Chem., 1985, 260, 9734.
- D. R. Davis, Z. Yamaizumi, S. Nishimura and C. D. Poulter, Biochemistry, 1989, 28, 4105.
- 209. A. M. Gronenborn, Ad Bax, P. T. Wingfield and G. M. Clore, FEBS Lett., 1989, 243, 93.
- 210. A. G. Redfield and M. Z. Papastavros, Biochemistry, 1990, 29, 3509.
- 211. K. Shon and S. J. Opella, J. Magn. Reson., 1989, 82, 193.
- 212. G. D. Henry and B. D. Sykes, J. Mol. Biol., 1990, 212, 11.
- Masahiro Shirakawa, Sang Jong Lee, Misato Takimoto, Hiroshi Matsuo, Hideo Akutsu and Yoshimasa Kyogoku, J. Mol. Struct., 1991, 242, 355.
- 214. L. E. Kay and Ad Bax, J. Magn. Reson., 1990, 86, 110.
- 215. D. A. Torchia, S. W. Sparks and Ad Bax, Biochemistry, 1989, 28, 5509.
- 216. L. E. Kay and Ad Bax, J. Magn. Reson., 1989, 84, 598.
- 217. J. Glushka, F. Barany and D. Cowburn, Biochem. Biophys. Res. Commun., 1989, 164, 88.
- 218. L. Mueller, S. L. Heald, J. C. Hempel and P. W. Jeffs, J. Am. Chem. Soc., 1989, 111, 495.
- N. Dekker, A. R. Peters, A. J. Slotboom, R. Boelens, R. Kaptein and G. de Haas, Biochemistry, 1991, 30, 3135.
- 220. T. Pehk, M. Haga, H. Vija and E. Lippmaa, Magn. Reson. Chem., 1989, 27, 173.
- R. A. Venters, T. L. Calderone, L. D. Spicer and C. A. Fierke, Biochemistry, 1991, 30, 4491.
- G. Kupferschmitt, J. Schmidt, Th. Schmidt, B. Fera, F. Buck and H. Rüterjans, Nucleic Acids Res., 1987, 15, 6225.

- Chuan Wang, Hetian Gao, B. L. Gaffney and R. A. Jones, J. Am. Chem. Soc., 1991, 113, 5486.
- 224. J. Ashcroft, D. H. Live, D. J. Patel and D. Cowburn, Biopolymers, 1991, 31, 45.
- 225. D. R. Davis and C. D. Poulter, Biochemistry, 1991, 30, 4223.
- 226. H. P. Juretschke, FEBS Letters, 1984, 178, 123.
- B. Wrackmeyer, K. Schamel, K. Guldner and M. Herberhold, Z. Naturforsch., 1987, 42b, 703.
- 228. Mitsuhiko Ikura, M. Krinks, D. A. Torchia and Ad Bax, FEBS Lett., 1990, 266, 155.
- 229. G. M. Clore, Ad Bax, P. Wingfield and A. M. Gronenborn, FEBS Lett., 1988, 238, 17.
- 230. Ad Bax, S. W. Sparks and D. A. Torchia, J. Am. Chem. Soc., 1988, 110, 7926.
- B. J. Stockman, M. D. Reily, W.M. Westler, E. L. Ulrich and J. L. Markley, Biochemistry, 1989, 28, 230.
- W. M. Westler, B. J. Stockman, J. L. Markley, Y. Hosoya, Y. Miyake and M. Kainosho, J. Am. Chem. Soc., 1988, 110, 6256.
- 233. E. S. Mooberry, Byung-Ha Oh and J. L. Markley, J. Magn. Reson., 1989, 85, 147.
- W. P. Niemczura, G. L. Helms, A. S. Chesnick, R. E. Moore and V. Bornemann, J. Magn. Reson., 1989, 81, 635.
- 235. G. T. Montelione and G. Wagner, J. Am. Chem. Soc., 1989, 111, 5474.
- 236. G. T. Montelione and G. Wagner, J. Magn. Reson., 1990, 87, 183.
- A. G. Palmer III, J. Cavanagh, P. E. Wright and M. Rance, J. Magn. Reson., 1991, 93, 151.
- 238. S. Campbell-Burk, P. Domaille and L. Mueller, J. Magn. Reson., 1991, 93, 171.
- J. G. Pelton, D. A. Torchia, N. D. Meadow, C. Y. Wong and S. Roseman, *Biochemistry*, 1991, 30, 10043.
- 240. H. Matsuo, M. Shirakawa, T. Ohkubo, T. Yamazaki and Y. Kyogoku, J. Biomol. NMR, 1991, 1, 191.
- Yasushi Oda, Haruki Nakamura, Shigenori Kanaya and Morio Ikehara, J. Biomol. NMR, 1991, 1, 247.
- 242. G. Wider and K. Wüthrich, Chem. Biochem. Mol. Biol., 1990, 1, 517.
- 243. E. R. P. Zuiderweg and S. W. Fesik, Biochemistry, 1989, 28, 2387.
- 244. L. E. Kay, M. Ikura, R. Tschudin and Ad Bax, J. Magn. Reson., 1990, 89, 496.
- 245. M. Ikura, L. E. Kay and Ad Bax, Biochemistry, 1990, 29, 4659.
- Kuniaki Nagayama, Toshio Yamazaki, Mayumi Yoshida, Shigenori Kanaya and Haruki Nakamura, J. Biochem., 1990, 108, 149.
- 247. S. W. Fesik and E. R. P. Zuiderweg, J. Magn. Reson., 1988, 78, 588.
- S. W. Fesik, R. T. Gampe Jr, E. R. P. Zuiderweg, W. E. Kohlbrenner and D. Weigl, Biochem. Biophys. Res. Commun. 1989, 159, 842.
- D. Marion, P. C. Driscoll, L. E. Kay, P. T. Wingfield, Ad Bax, A. M. Gronenborn and G. M. Clore, *Biochemistry*, 1989, 28, 6150.
- 250. L. E. Kay, Mitsuhiko Ikura and Ad Bax, J. Magn. Reson., 1991, 91, 84.
- 251. G. Wagner, P. Schmieder and V. Thanabal, J. Magn. Reson., 1991, 93, 436.
- P. Schmieder, V. Thanabal, L. P. McIntosh, F. W. Dahlquist and G. Wagner, J. Am. Chem. Soc., 1991, 113, 6323.
- 253. K. V. R. Chary, G. Otting and K. Wüthrich, J. Magn. Reson., 1991, 93, 218.
- 254. B. T. Farmer II, J. Magn. Reson., 1991, 94, 413.
- 255. L. E. Kay, M. Ikura, Guang Zhu and Ad Bax, J. Magn. Reson., 1991, 91, 422.
- 256. Mitsuhiko Ikura, L. E. Kay, M. Krinks and Ad Bax, Biochemistry, 1991, 30, 5498.
- 257. P. L. Weber and L. Mueller, J. Magn. Reson., 1989, 81, 430.
- D. Marion, L. E. Kay, S. W. Sparks, D. A. Torchia and Ad Bax, J. Am. Chem. Soc., 1989, 111, 1515.

- 259. H. Senn, G. Otting and K. Wüthrich, J. Am. Chem. Soc., 1987, 109, 1090.
- Toshio Yamazaki, Mayumi Yoshida, Shigenori Kanaya, Haruki Nakamura and Kuniaki Nagayama, Biochemistry, 1991, 30, 6036.
- 261. K. Chandrasekhar, G. Krause, A. Holmgren and H. J. Dyson, FEBS Lett., 1991, 284, 178.
- 262. Yiqing Feng, A. J. Wand and S. G. Sligar, Biochemistry, 1991, 30, 7711.
- J. M. Schmidt, H. Thûring, A. Werner, H. Rûterjans, R. Quaas and U. Hahn, Eur. J. Biochem., 1991, 197, 643.
- 264. M. D. Carr, B. Birdsall, T. A. Frenkiel, C. J. Bauer, J. Jimenez-Barbero, V. I. Polshakov, E. McCormick, G. C. K. Roberts and J. Feeney, *Biochemistry*, 1991, 30, 6330.
- 265. R. T. Clubb, V. Thanabal, C. Osborne and G. Wagner, Biochemistry, 1991, 30, 7718.
- G. M. Clore, Ad Bax, P. C. Driscoll, P. T. Wingfield and A. M. Gronenborn, Biochemistry, 1990, 29, 8172.
- 267. W. J. Fairbrother, J. Cavanagh, H. J. Dyson, A. G. Palmer, S. L. Sutrina, J. Reizer, M. H. Saier Jr. and P. E. Wright, Biochemistry, 1991, 30, 6896.
- 268. L. E. Kay, D. A. Torchia and Ad Bax, Biochemistry, 1989, 28, 8972.
- 269. Ad Bax, L. E. Kay, S. W. Sparks and D. A. Torchia, J. Am. Chem. Soc., 1989, 111, 408.
- R. A. Schiksnis, A. L. Rockwell, L. M. Gierasch and S. J. Opella, *J. Magn. Reson.*, 1988, 79, 318.
- N. C. Nielsen, H. Bildsoe, H. J. Jakobsen and O. W. Sorensen, J. Am. Chem. Soc., 1987, 109, 901.
- 272. R. H. Griffey, M. A. Jarema, S. Kunz, P. R. Rosevear and A. G. Redfield, J. Am. Chem. Soc., 1985, 107, 711.
- 273. V. A. Lopyrev, L. I. Larina, T. I. Vakul'skaya, M. F. Larin, E. F. Shibanova, I. A. Titova, M. G. Voronkov and E. E. Liepin'sh, Magn. Reson. Chem., 1985, 23, 301.
- 274. V. A. Pestunovich, B. Z. Shterenberg, L. P. Petukhov, V. I. Rakhlin, V. P. Baryshok, R. G. Mirskov and M. G. Voronkov, Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 8, 1935.
- 275. I. Kieper, T. Schmidt, B. Fera and H. Ruterjans, Nucleos. Nucleot., 1988, 7, 821.
- J. H. Gilchrist, A. T. Harrison, D. J. Fuller and D. B. Collum, J. Am. Chem. Soc., 1990, 112, 4069.
- 277. L. E. Kay, D. A. Torchia and Ad Bax, Biochemistry, 1989, 28, 8972.
- 278. M. J. Kime, FEBS Letters, 1984, 173, 342.
- 279. M. J. Kime, FEBS Letters, 1984, 175, 259.
- W. Massefski Jr, A. Redfield, U. D. Sarma, A. Bannerji and S. Roy, J. Am. Chem. Soc., 1990, 112, 5350.
- Yoshihiro Kuroda, Yasuhiro Fujiwara and Kazuhiro Matsushita, J. Magn. Reson., 1985,
 149.
- 282. Yoshihiro Kuroda and Yasuhiro Fujiwara, Magn. Reson. Chem., 1987, 25, 335.
- 283. E. Kupče and B. Wrackmeyer, J. Magn. Reson., 1991, 94, 170.
- 284. A. Haase and D. Höpfel, J. Magn. Reson., 1988, 80, 389.
- 285. S. Jurga, J. Seliger, R. Blinc and H. W. Spiess, Phys. Lett. A, 1986, 116, 295.
- 286. K. V. Ramanathan and S. J. Opella, J. Magn. Reson., 1988, 78, 367.
- 287. A. N. Garroway and J. B. Miller, J. Magn. Reson., 1989, 82, 591.
- 288. R. Tycko, P. L. Stewart and S. J. Opella, J. Am. Chem. Soc., 1986, 108, 5419.
- 289. R. Tycko and S. J. Opella, J. Am. Chem. Soc., 1986, 108, 3531.
- 290. K. V. Ramanathan and S. J. Opella, J. Magn. Reson., 1990, 86, 227.
- 291. P. L. Stewart, R. Tycko and S. J. Opella, J. Chem. Soc., Faraday Trans. I, 1988, 84, 3803.
- 292. Akira Naito and C. A. McDowell, J. Chem. Phys., 1984, 81, 4795.
- 293. C. A. McDowell, A. Naito, D. L. Sastry and K. Takegoshi, J. Magn. Reson., 1986, 283.
- 294. T. J. Bastow and S. N. Stuart, Chem. Phys. Lett., 1991, 180, 305.

- R. A. Santos, Pei Tang, Wei-Jyun Chien, S. Kwan and G. S. Harbison, J. Phys. Chem., 1990, 94, 2717.
- 296. T. J. Bastow and S. N. Stuart, J. Phys.: Condensed Matter 1989, 1, 4649.
- 297. S. Wigand, N. Weiden and A. Weiss, Ber. Bunsengs. Phys. Chem., 1989, 93, 913.
- 298. D. Suter and R. R. Ernst, Phys. Rev. B, 1985, 32, 5608.
- J. Dolinšek, S. Žumer and R. Blinc, XII Congr. AMPERE Magn. Relat. Phenom. Proc., 1984, 64.
- 300. Akira Naito and C. A. McDowell, Rev. Sci. Instrum., 1989, 60, 1037.
- 301. Zhehong Gan and D. M. Grant, J. Magn. Reson., 1990, 90, 522.
- 302. R. K. Harris, P. Jonsen and K. J. Packer, Org. Magn. Reson., 1984, 22, 784.
- 303. A. Naito, P. B. Barker and C. A. McDowell, J. Chem. Phys., 1984, 81, 1583.
- 304. N. J. Heaton, R. R. Vold and R. L. Vold, J. Chem. Phys., 1989, 91, 56.
- 305. G. Schnur, R. Kimmich and F. Winter, J. Magn. Reson., 1986, 66, 295.
- 306. J. Olliges, A. Lötz, J. Voitländer, H. Barfuss, G. Böhnlein, F. Gubitz, W. Ittner, G. Lanzendorfer, W. Kreische and B. Röseler, XXII Congr. AMPERE Magn. Reson. Phenom Proc., 1984, 436.
- R. Blinc, J. Seliger, V. Žagar, T. Apih, J. Dolinšek, H. Warhanek and W. Schranz, Phys. Rev. B, 1990, 42, 8125.
- 308. M. A. Doverspike and M. S. Conradi, Phys. Rev. B, 1984, 30, 4905.
- 309. L. Mueller, M. H. Frey, A. L. Rockwell, L. M. Gierasch and S. J. Opella, *Biochemistry*, 1986, 25, 557.
- 310. R. E. Wasylishen, O. Knop and J. B. Macdonald, Solid State Commun., 1985, 56, 581.
- 311. T. K. Pratum and M. P. Klein, J. Magn. Reson., 1989, 81, 350.
- 312. T. K. Pratum and M. P. Klein, J. Magn. Reson., 1989, 81, 350.
- 313. D. J. Simonovitch, M. F. Brown and K. R. Jeffrey, Biochemistry, 1984, 23, 2412.
- D. J. Siminovitch, M. Rance, K. R. Jeffrey and M. F. Brown, J. Magn. Reson., 1984, 58, 62.
- 315. Y. Kanazawa, R. Takano, I. Nishizono, K. Koga, M. Ishikawa, W. Higuchi and T. Yamada, *Chem. Lett.*, 1985, 717.
- 316. T. J. Bastow, R. J. C. Brown, A. M. C. Harnden, B. K. Hunter, S. L. Segel and R. D. Weir, 24th AMPERE Congress, 1988, Poznań, 145.
- Th. Erge, F. Engelke, D. Michel, W. Windsch and J. Peterssen, Ferroelectrics, 1990, 108, 331.
- 318. F. Engelke, D. Michel, W. Windsch and J. Petersson, *Phys. Stat. Sol.* (b), 1986, 134, 29.
- 319. T. A. Cross and S. J. Opella, J. Am. Chem. Soc., 1983, 105, 306.
- G. S. Harbison, L. W. Jeliński, R. E. Stark, D. A. Torchia, J. Herzfeld and R. G. Griffin, J. Magn. Reson., 1984, 60, 79.
- 321. M. A. Doverspike and M. S. Conradi, Phys. Rev. B, 1984, 30, 4905.
- 322. F. Engelke, D. Michel, W. Windsch and J. Petersson, Ferroelectrics, 1988, 80, 99.
- A. Shoji, T. Ozaki, T. Fujito, K. Deguchi, S. Ando and I. Ando, *Macromolecules*, 1989, 22, 2860.
- T. G. Oas, C. J. Hartzell, F. W. Dahlquist and G. P. Drobny, J. Am. Chem. Soc., 1987, 109, 5962.
- K. G. Valentine, A. L. Rockwell, L. M. Gierasch and S. J. Opella, J. Magn. Reson., 1987, 73, 519.
- Yukio Hiyama, Chien-Hua Niu, J. V. Silverton, A. Bavoso and D. A. Trochia, J. Am. Chem. Soc., 1988, 110, 2378.
- 327. D. G. Powell and L. J. Mathias, *Polym Commun.*, 1990, 31, 58.
- 328. M. Munowitz, T. H. Huang and R. G. Griffin, J. Chem. Phys., 1987, 86, 4362.

- H. J. M. da Groot, G. S. Harbison, J. Herzfeld and R. G. Griffin, Biochemistry, 1989, 28, 3346.
- R. E. Wasylishen, G. H. Penner, W. P. Power and R. D. Curtis, J. Am. Chem. Soc., 1989, 111, 6082.
- 331. M. Sardashti and G. E. Maciel, J. Phys. Chem., 1988, 92, 4620.
- R. E. Wasylishen, W. P. Power, G. H. Penner and R. D. Curtis, Can. J. Chem., 1989, 67, 1219.
- 333. M. A. Doverspike, Meng-Chou Wu and M. S. Conradi, Phys. Rev. Lett., 1986, 56, 2284.
- K. G. Valentine, D. M. Schneider, G. C. Leo, L. A. Colnago and S. J. Opella, *Biophys. J.*, 1986, 49, 36.
- 335. L. A. Colnago, K. G. Valentine and S. J. Opella, Biochemistry, 1987, 26, 847.
- 336. G. C. Leo, L. A. Colnago, K. G. Valentine and S. J. Opella, Biochemistry, 1987, 26, 854.
- 337. M. J. Bogusky, G. C. Leo and S. J. Opella, *Proteins: Structure, Function and Genetics*, 1988, 4, 123.
- 338. T. A. Cross, Synt. Appl. Isotop. Label. Comp., 1985, 247.
- 339. L. K. Nicholson, F. Moll, T. E. Mixon, P. V. LoGrasso, J. C. Lay and T. A. Cross, *Biochemistry*, 1987, 26, 6621.
- 340. J. A. Killian, L. K. Nicholson and T. A. Cross, Biochim. Biophys. Acta, 1988, 943, 535.
- 341. P. V. LoGrasso, F. Moll III and T. A. Cross, Biophys. J., 1988, 54, 259.
- 342. P. V. LoGrasso, L. K. Nicholson and T. A. Cross, J. Am. Chem. Soc., 1989, 111, 1910.
- 343. Q. Teng and T. A. Cross, J. Magn. Reson., 1989, 85, 439.
- 344. L. K. Nicholson and T. A. Cross, Biochemistry, 1989, 28, 9379.
- 345. Bo Ouyang and M. S. Conradi, Phys. Rev. B, 1991, 44, 9295.
- 346. C. J. Hartzell, T. K. Pratum and G. Drobny, J. Chem. Phys., 1987, 87, 4324.
- T. G. Oas, C. J. Hartzell, G. P. Drobny and F. W. Dahlquist, J. Magn. Reson., 1989, 81, 395.
- 348. S. O. Smith, G. S. Harbison, D. P. Raleigh, J. E. Roberts, J. A. Pardoen, S. K. Das Gupta, C. Mulliken, R. A. Mathies, J. Lugtenburg, J. Herzfeld and R. G. Griffin, Biomolecular Stereodynamics III. Proceedings of the Fourth Conversation in the Discipline of Biomolecular Stereodynamics, State Univ. New York H. S. Ramaswamy and H. S. Mukti, eds), Adenine Press, 1986, p. 159.
- 349. R. A. Santos, Wei-Jyun Chien and G. S. Harbison, J. Magn. Reson., 1989, 84, 357.
- 350. V. Copié, W. S. Faraci, C. T. Walsh and R. G. Griffin, Biochemistry, 1988, 27, 4966.
- R. M. Dickson, M. S. McKinnon, J. F. Britten and R. E. Wasylishen, Can. J. Chem., 1987, 65, 941.
- 352. You Xiaozeng and Wu Weixiong, Magn. Reson. Chem., 1987, 25, 860.
- 353. R. E. Wasylishen, Spectrochim. Acta, 1984, 40A, 115.
- 354. K. Takegoshi and C. A. McDowell, J. Magn. Reson., 1986, 67, 356.
- 355. L. Delmotte, M. Soulard and H. Kessler, Chem. Lett., 1990, 1215.
- E. Grech, L. Stefaniak, I. Ando, M. Yoshimizu, G. A. Webb and L. Sobczyk, Bull. Chem. Soc. Jpn, 1990, 63, 2716.
- L. Stefaniak, I. Ando, H. Yoshimizu, J. Lipkowski and G. A. Webb, J. Crystallogr. Spectrosc. Res., 1991, 21, 51.
- R. Futtero, G. E. Hawkes, E. W. Randall, A. Gasco and C. J. Groombridge, J. Chem. Soc. Perkin Trans. II, 1988, 1863.
- 359. L. J. Mathias, D. G. Powell and A. M. Sikes, Polym. Commun., 1988, 29, 192.
- J. Kaválek, V. Macháek, V. Šteřba and A. Lyka, Collect. Czech. Chem. Commun., 1988, 53, 1033.
- 361. D. G. Powell, A. M. Sikes and L. J. Mathias, Polymer, 1991, 32, 2523.
- 362. L. J. Mathias and C. G. Johnson, Macromolecules, 1991, 24, 6114.

- 363. G. A. Duff, J. E. Roberts and N. Foster, Biochemistry, 1988, 27, 7112.
- 364. H. R. Kricheldorf and D. Müller, Int. J. Biol. Macromol., 1984, 6, 145.
- S. Kitagawa, M. Munakata, K. Deguchi and T. Fujito, Magn. Reson. Chem., 1991, 29, 566.
- B. Chaloner-Gill, W. B. Euler, P. D. Mumbauer and J. E. Roberts, J. Am. Chem. Soc., 1991, 113, 6831.
- 367. B. Chaloner-Gill, W. B. Euler and J. E. Roberts, Macromolecules, 1991, 24, 3074.
- L. J. Mathias, D. G. Powell, J. P. Autran and R. S. Porter, *Mater. Sci. Eng.*, 1990, A126, 253.
- 369. D. G. Powell, A. M. Sikes and L. M. Mathias, Polym. Mater. Sci. Eng., 1989, 60, 810.
- 370. D. G. Powell and L. J. Mathias, *Macromolecules*, 1989, 22, 3812.
- 371. D. G. Powell, A. M. Sikes and L. J. Mathias, Gov. Rep. Annu. Ind., 1988, 88, 559.
- 372. L. J. Mathias, D. G. Powell, J. P. Autran and R. S. Porter, Macromolecules, 1990, 23, 963.
- 373. R. L. Willer and D. W. More, Magn. Reson. Chem., 1988, 26, 95.
- 374. D. G. Powell, A. M. Sikes and L. J. Mathias, *Macromolecules*, 1988, 21, 1533.
- 375. L. J. Mathias and C. G. Johnson, Polymers, 1991, 32, 80.
- 376. A. F. Richter, A. Ray, K. V. Ramanthan, S. K. Manohar, G. T. Furst, S. J. Opella, A. G. MacDiarmid and A. J. Epstein, Synth. Metals, 1989, 29, E243.
- Ichiro Tajima, Takao Suda, Minoru Yamamoto, Kozo Satta and Hidetake Morimoto, Polym. J., 1988, 20, 919.
- C. N. Matthews, R. Ludicky, J. Schaefer, E. O. Stejskal and R. A. McKay, Origins of Life, 1984, 14, 243.
- S. Bulusu, Materials Characterisation for Systems Performance and Reliability (J. W. McCauley and V. Weiss, eds), 1986, p. 487.
- 380. S. Bulusu, Materials Characterisation for Systems Performance and Reliability (J. W. McCauley and V. Weiss, eds), 1986, p. 479.
- 381. B. Wehrle, H. H. Limbach and H. Bräuling, Synth. Metals, 1991, 39, 319.
- 382. B. Wehrle, H. H. Limbach, J. Mortensen and J. Heinze, Synth. Metals, 1990, 38, 293.
- 383. Yu Chun and Ma Feng-Yun, Proc. 3rd Beijing Conf. and Exhib. on Instrum. Analysis, 1989, E35.
- 384. R. D. Curtis and R. E. Washylishen, Can. J. Chem., 1991, 69, 834.
- Shigeki Kuroki, Shinji Ando, Isao Ando, Akira Shoji, Takuo Ozaki and G. A. Webb, J. Mol. Struct., 1990, 240, 19.
- 386. A. I. Scott, J. Mol. Catal., 1988, 47, 139.
- N. E. Mackenzie, P. E. Fagerness and A. I. Scott, J. Chem. Soc. Chem. Commun., 1985, 635.
- 388. H. B. R. Cole, S. W. Sparks and D. A. Torchia, Proc. Natl Acad. Sci. USA, 1988, 85, 6362.
- P. A. Burke, S. O. Smith, W. W. Bachovchin and A. M. Klibanow, J. Am. Chem. Soc., 1989, 111, 8290.
- 390. S. O. Smith, S. Farr-Jones, R. G. Griffin and W. W. Bachovchin, Science, 1989, 244, 961.
- Tai-Huang Huang, W. W. Bachovchin, R. G. Griffin and C. M. Dobson, Biochemistry, 1984, 23, 5933.
- S. Farr-Jones, S. O. Smith, C. A. Kettner, R. G. Griffin and W. W. Bachovchin, Proc. Natl. Acad. Sci. USA, 1989, 86, 6922.
- 393. J. E. Garbow, G. S. Jacob, E. O. Stejskal and J. Schaefer, Biochemistry, 1989, 28, 1362.
- G. E. Wilson Jr., G. S. Jacob and J. Schaefer, Biochem. Biophys. Res. Commun., 1985, 126, 1006
- 395. T. A. Skokut, J. Manchester and J. Schaefer, Plant. Physiol., 1985, 79, 579.
- 396. N. Belay, R. Sparling, B.-S. Choi, M. Roberts, J. E. Roberts and L. Daniels, *Biochim. Biophys. Acta*, 1988, 971, 233.

- 397. Byong-Seok Choi, J. E. Roberts, J. N. S. Evans and M. F. Roberts, *Biochemistry*, 1986, 25, 2244.
- 398. G. S. Jacob, J. Schaefer, J. R. Garbow and E. O. Stejskal, J. Biol. Chem., 1987, 262, 254.
- 399. G. S. Jacob, J. Schaefer, E. O. Stejskal and R. McKay, J. Biol. Chem., 1985, 260, 5899.
- 400. K. J. Kramer, T. L. Hopkins, J. Schaefer, T. D. Morgan, J. R. Garbow, G. S. Jacob, E. O. Stejskal and R. D. Speirs, MCLA Symp. Mol. Cel. Biol., Los Angeles, UCLA, 1987, 49, 331.
- 401. J. Schaefer, K. J. Kramer, J. R. Garbow, G. S. Jacob, E. O. Stejskal, T. L. Hopkins and R. D. Speirs, Science, 1987, 235, 1200.
- L. M. Benzing-Purdie, M. V. Cheshire, B. L. Williams, G. P. Sparling, C. I. Ratcliffe and J. A. Ripmeester, J. Agric. Food Chem., 1986, 34, 170.
- 403. L. M. Benzing-Purdie and J. A. Ripmeester, Chem. Ind., 1987, 245.
- 404. L. M. Benzing-Purdie and J. A. Ripmeester, J. Carbohydrate Chem., 1987, 6, 87.
- 405. F. Hayase, S. B. Kim and H. Kato, Agric. Biol. Chem., 1986, 50, 1951.
- 406. S. J. Opella and K. M. Morden, Dynamics Properties of Biomolecular Assemblies, pp. 196-209.
- 407. H. J. M. de Groot, S. O. Smith, J. Courtin, E. van den Berg, C. Winkel, J. Lugtenburg, R. G. Griffin and J. Herzfeld, *Biochemistry*, 1990, 29, 6873.
- 408. S. O. Smith, G. S. Harbison, D. P. Raleigh, J. E. Roberts, J. A. Pardoen, S. K. Das Gupta, R. A. Mathies, J. Lugtenburg, J. Herzfeld and R. G. Griffin, Synth. Appl. Isotop. Label. Comp. 1985. Proc. Second Int. Symp., Kansas City, MO, USA, 3-6 Sept. 1985 (R. R. Muccino, ed.), 1986, 239.
- G. D. Mateescu, E. W. Abrahamson, J. W. Shriver, W. Copan, D. Muccio, M. Iqbal and V. Waterhous, NATO ASI Ser. C, Spectroscopy of Biological Molecules, 1984, 257.
- G. S. Harbison, J. E. Roberts, J. Herzfeld and R. G. Griffin, J. Am. Chem. Soc., 1988, 110, 7221.
- 411. R. K. Harris, L. H. Merwin and G. Hägele, Magn. Reson. Chem., 1989, 27, 470.
- 412. A. Lyčka, J. Jirman, B. Schneider and J. Straka, Magn. Reson. Chem., 1988, 26, 507.
- 413. S. J. Berners-Price, K. Morden, S. J. Opella and P. J. Sadler, *Magn. Reson. Chem.* 1986, 24, 734.
- 414. S. Bulusu, R. L. Dudley and J. R. Autera, Magn. Reson. Chem., 1987, 25, 234.
- 415. R. K. Harris, M. J. Leach and D. P. Thompson, Chem. Mater., 1990, 2, 320.
- 416. D. P. Thompson, M. J. Leach and R. K. Harris, Proc. C-MRS Int. Symp., 1990, 2, 435.
- 417. D. Kruppa, R. Dupree and M. H. Lewis, *Mater. Lett.*, 1991, 11, 195.
- 418. R. A. Marino and Suryanarayana Bulusu, J. Energ. Mater., 1985, 3, 57.
- 419. J. L. White and J. F. Haw, J. Am. Chem. Soc., 1990, 112, 5896.
- M. L. H. Gruwel, M. S. McKinnon and R. E. Wasylishen, Chem. Phys. Lett., 1987, 139, 321.
- 421. R. D. Curtis, M. J. Schriver and R. E. Wasylishen, J. Am. Chem. Soc., 1991, 113, 1493.
- W. L. Earl, P. O. Fritz, A. A. V. Gibson and J. H. Lunsford, J. Phys. Chem., 1987, 91, 2091.
- 423. P. D. Majors and P. D. Ellis, J. Am. Chem. Soc., 1987, 109, 1648.
- 424. J. A. Rippmester, R. E. Hawkins, J. A. MacPhee and B. N. Nandi, FUEL, 1986, 65, 740.
- 425. W. Meiler and T. Wutscherk, Isotopenpraxis, 1989, 25, 41.
- 426. W. Gründer, P. Krumbiegel, K. Buchali and H. J. Blesin, Phys. Med. Biol., 1989, 34, 457.
- 427. B. Wehrle and H. H. Limbach, Chem. Phys., 1989, 136, 223.
- F. Aguilar-Parrilla, B. Wehrle, H. Bräunling and H. H. Limbach, J. Magn. Reson., 1990, 87, 592.
- 429. B. Wehrle, F. Aguilar-Parrilla and H. H. Limbach, J. Magn. Reson., 1990, 87, 584.
- 430. H. Rumpel and H. H. Limbach, J. Am. Chem. Soc., 1989, 111, 5429.

- J. A. S. Smith, B. Wehrle, F. Aquilar-Parrilla, H. H. Limbach, M. de la Concepcion Foces-Foces, F. H. Cano, J. Elguero, A. Baldy, M. Pierrot, Mian M. T. Khurshid and J. B. Larcombe-McDouall, J. Am. Chem. Soc., 1989, 111, 7304.
- 432. B. Wehrle, H. H. Limbach and H. Zimmermann, Ber. Bunsen. Phys. Chem., 1987, 91, 941.
- 433. B. Wehrle, H. Zimmermann and H. H. Limbach, J. Am. Chem. Soc., 1988, 110, 7014.
- 434. H. H. Limbach, B. Wehrle, M. Schlabach, R. Kendrick and C. S. Yannoni, J. Magn. Reson., 1988, 77, 84.
- 435. B. Wehrle, H. H. Limbach, M. Köcher, O. Ermer and E. Vogel, Angew. Chem., 1987, 26, 934
- 436. H. H. Limbach, B. Wehrle, H. Zimmermann, R. D. Kendrick and C. S. Yannoni, *Angew. Chem.*, 1987, 26, 247.
- H. H. Limbach, B. Wehrle, H. Zimmermann, R. D. Kendrick and C. S. Yannoni, J. Am. Chem. Soc., 1987, 109, 929.
- 438. R. D. Kendrick, S. Friedrich, B. Wehrle, H. H. Limbach and C. S. Yannoni, *J. Magn. Reson.*, 1985, **65**, 159.
- 439. G. Klebe, K. Hensen and J. von Jouane, J. Organomet. Chem., 1983, 258, 137.
- I. S. Chuang, B. L. Hawkins, G. E. Maciel and G. E. Myers, *Macromolecules*, 1985, 18, 1482.
- 441. D. W. Duff and G. E. Maciel, Macromolecules, 1990, 23, 4367.
- 442. G. R. Hatfield and G. E. Maciel, Macromolecules, 1987, 20, 608.
- 443. W. D. Weber and P. D. Murphy, Polym. Mater. Sci., 1987, 57, 341.
- 444. Yong Pan, T. Gullion and J. Schaefer, J. Magn. Reson., 1990, 90, 330.
- 445. T. Gullion and J. Schaefer, J. Magn. Reson., 1989, 81, 196.
- 446. J. R. Garbow, J. Schaefer, R. Ludicky and C. N. Matthews, Macromolecules, 1987, 20, 305
- 447. E. O. Stejskal, J. Schaefer and R. A. McKay, J. Magn. Reson., 1984, 57, 471.
- J. Schaefer, E. O. Stejskal, J. R. Grabow and R. A. McKay, J. Magn. Reson., 1984, 59, 150.
- 449. G. T. Coker III, J. R. Garbow and J. Schaefer, Plant Physiol., 1987, 83, 698.
- 450. G. T. Coker III and J. Schaefer, Plant Physiol., 185, 77, 129.
- 451. G. S. Jacob, J. Schaefer and G. E. Wilson Jr, J. Biol. Chem., 1985, 260, 2777.
- R. A. McKay, J. Schaefer, E. O. Stejskal, R. Ludicky and C. N. Matthews, Macromolecules, 1984, 17, 1124.
- 453. C. N. Matthews, R. Ludicky, J. Schaefer, E. O. Stejskal and R. A. McKay, Origins of Life, 1984, 14, 243.
- Eun Kee Jeong, J. H. Walton, M. A. Doverspike and M. S. Conradi, J. Magn. Reson., 1990, 89, 381.
- 455. A. C. Olivieri, J. Magn. Reson., 1989, 81, 201.
- 456. B. H. Ruessink and C. Maclean, Chem. Phys. Lett., 1984, 110, 634.
- 457. B. H. Ruessink and C. MacLean, Mol. Phys., 1984, 53, 421.
- 458. B. H. Ruessink, F. J. J. de Kanter and C. MacLean, J. Magn. Reson., 1985, 62, 226.
- 459. Q. Teng, L. K. Nicholson and T. A. Cross, J. Mol. Biol., 1991, 218, 607.
- 460. L. K. Nicholson, Q. Teng and T. A. Cross, J. Mol. Biol., 1991, 218, 621.
- 461. S. Akoka and C. Tellier, Biochimie, 1989, 71, 137.
- 462. P. G. Scherer and J. Seelig, Biochemistry, 1989, 28, 7720.
- 463. Y. Kanazawa, R. Takano, I. Nishizono, K. Koga, M. Ishikawa, W. Higuchi and T. Yamada, *Chem. Lett.*, 1985, 717.
- 464. H. Gilboa and A. Loewenstein, Israel J. Chem., 1983, 23, 295.
- 465. D. Imbardelli, G. Chidichimo and P. Bucci, Liquid Cryst., 1990, 7, 895.
- 466. T. M. Barbara, Mol. Phys., 1985, 54, 651.

- C. Chachaty, J. Ph. Caniparoli, A. Faure and A. M. Tistchenko, J. Phys. Chem., 1988, 92, 6330.
- 468. E. S. Blackmore and G. J. T. Tiddy, Liquid Cryst., 1990, 8, 131.
- 469. G. Dombi, P. Diehl, J. Lounila and R. Wasser, Org. Magn. Reson., 1984, 22, 573.
- 470. Ch. Tellier, P. Malnoe and S. Poignant, Org. Magn. Reson., 1984, 22, 727.
- 471. E. E. Burnell and C. A. de Lange, Chem. Phys. Lett., 1984, 106, 413.
- 472. Yoshiteru Seo and Masataka Murakami, Proc. R. Soc. Lond. B, 1991, 244, 191.
- S. Shapiro, L. C. Vining, M. Laycock, A. G. McInnes and J. A. Walter, Can. J. Microbiol. 1985, 31, 629.
- 474. P. Krumbiegel, W. Gründer, K. Buchali, K. Hirschberg and H. Faust, *Isotopenpraxis*, 1985, 21, 316.
- K. Buchali, W. Gründer, P. Krumbiegel, H. J. Blesin and H. Faust, Radiobiol. Radiother., 1985, 26, 543.
- 476. J. Wójcik, L. Stefaniak, M. Witanowski and G. A. Webb, J. Mol. Struc., 1986, 147, 175.
- 477. Tetsuo Asakura and Hiroaki Yoshimizu, Prog. Polym. Phys. Jpn, 1987, 30, 741.
- 478. P. Lundberg, R. G. Weich, P. Jensen and H. J. Vogel, Plant. Physiol., 1989, 89, 1380.
- A. B. Venediktov, M. A. Fedotov, S. V. Korenev and A. V. Belyaev, Koord. Khim., 1989,
 15, 556.
- 480. Keiko Kanamori, R. L. Weiss and J. D. Roberts, J. Biol. Chem., 1987, 262, 11038.
- M. F. Roberts, Byong-Seok Choi, D. E. Robertson and S. Lesage, J. Biol. Chem., 1990, 265, 18207.
- 482. H. G. O. Becker, D. Pfeifer and R. Radeglia, Z. Naturforsch., 1983, 38b, 1591.
- 483. A. H. Clemens, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc. Perkin Trans. II, 1984, 1667.
- 484. A. H. Clemens, P. Helsby, J. H. Ridd, F. Al-Omran and J. P. B. Sandall, J. Chem. Soc. Perkin Trans. II, 1985, 1217.
- 485. A. H. Clemens, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc. Perkin Trans. II, 1984, 1659.
- 486. A. H. Clemens, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc. Perkin Trans. II, 1985, 1227.
- 487. J. F. Johnston, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc. Perkin Trans. II, 1991, 623.
- 488. A. M. A. Abu-Namous, J. H. Ridd and J. P. B. Sandall, Can. J. Chem., 1986, 64, 1124.
- 489. J. F. Johnston, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc. Chem. Commun., 1989, 244.
- 490. K. M. Morden and S. J. Opella, J. Magn. Reson., 1986, 70, 476.
- 491. Nailin Chen, P. J. Witton, C. E. Holloway and I. M. Walker, Polyhedron, 1987, 6, 489.
- 492. R. E. Wasylishen and J. O. Friedrich, J. Chem. Phys., 1984, 80, 585.
- V. P. Tarasov, V. I. Privalov, Yu. A. Buslaev and U. Eichhoff, Z. Naturforsch., 1984, 39b, 1230.
- 494. A. Lyčka and P. E. Hansen, Magn. Reson. Chem., 1985, 23, 973.
- Yu. A. Strelenko, V. N. Torocheshnikov and N. M. Sergeyev, J. Magn. Reson., 1990, 89, 123.
- 496. L. P. Yu and G. M. Smith, Biochemistry, 1990, 29, 2914.
- 497. R. M. Jarret and M. Saunders, J. Am. Chem. Soc., 1986, 108, 7549.
- 498. A. Lyčka and P. E. Hansen, Org. Magn. Reson., 1984, 22, 569.
- 499. J. O. Friedrich and R. E. Wasylishen, J. Chem. Phys., 1985, 83, 3707.
- 500. K. K. Andersson and A. B. Hooper, FEBS Letters, 1983, 164, 236.
- 501. J. M. Risley and L. van Etten, Methods in Enzymology, 1990, 117, 376.
- 502. A. A. DiSpirito and A. B. Hooper, J. Biol. Chem., 1986, 261, 10534.
- 503. R. L. van Etten, Synth. Appl. Isot. Label. Comp., 1985, 257.
- 504. G. Rajendran and R. L. van Etten, Inorg. Chem., 1986, 25, 876.
- 505. G. Rajendran, R. E. Santini and R. L. van Etten, J. Am. Chem. Soc. 1987, 109, 4357.
- 506. J. A. Valley and R. F. Evilia, Spectrosc. Lett., 1990, 23, 233.
- 507. M. Audit, D. Davoust, N. Goasdoue and N. Platzer, Magn. Reson. Chem., 1985, 23, 33.

- 508. F. Escudero, O. Mó and M. Yáñez, J. Chem. Soc. Perkin Trans. II, 1983, 1735.
- 509. R. T. C. Brownlee and M. Sadek, Magn. Reson. Chem., 1986, 24, 821.
- 510. H. Falk, H. Gsaller, E. Hubauer and N. Müller, Monats. Chem., 1985, 116, 939.
- Yu. B. Vysotskii, E. A. Zemskaya, B. P. Zemskii and V. I. Dulenko, Khim. Geterosikl. Soedin., 1987, 544.
- M. Witanowski, L. Stefaniak, P. Dobrowolski, J. Wójcik and G. A. Webb, Bull. Pol. Acad. Sci.: Chem., 1988, 36, 229.
- R. Müller, W. von Philipsborn, L. Schleifer, P. Aped and B. Fuchs, *Tetrahedron*, 1991, 47, 10103.
- 514. Bo-Long Poh, Magn. Reson. Chem., 1986, 24, 816.
- 515. J. Dorie and J. P. Gouesnard, J. Chem. Phys. 1985, 82, 369.
- 516. M. Witanowski, W. Sicińska and S. Biernat, Spectrosc. Int. J., 1989, 7, 315.
- 517. S. Castellino, G. C. Leo, R. D. Sammons and J. A. Sikorski, Biochemistry, 1989, 28, 3856.
- 518. P. Yu Liping and G. M. Smith, Biochemistry, 1988, 27, 1949.
- 519. P. Yu Liping and G. M. Smith, Proc. Natl Acad. Sci. USA, 1988, 85, 2894.
- C. J. Welch, X.-X. Zhou, A. Nyilas, G. Remaud and J. Chattopadhyaya, Bioactive Molecules, 1987, 3, 107.
- C. Glemarec, J. C. Wu, H. Bazin, G. Remaud, M. Oivanen, H. Lönnberg and J. Chattopadhyaya, Nucleos. Nucleot., 1988, 7, 801.
- 522. B. Birdsall, A. W. Bevan, C. Pascual, G. C. K. Roberts, J. Fenney, A. Gronenborn and G. M. Clore, *Biochemistry*, 1984, 23, 4733.
- 523. R. Futtero, G. E. Hawkes, E. W. Randall, A. Gasco and C. J. Grombridge, J. Chem. Soc. Perkin Trans. II, 1988, 1863.
- C. T. W. Moonen, W. A. M. van der Berg, M. Boerjan and F. Müller, Biochemistry, 1984,
 23, 4873.
- 525. C. T. W. Moonen, J. Vervoort and F. Müller, Biochemistry, 1984, 23, 4859.
- S. J. Benkovic, D. Sammons, W. L. F. Armarego, P. Waring and R. Inners, J. Am. Chem. Soc., 1985, 107, 3706.
- 527. J. Vervoort, F. Müller, J. LeGall, A. Bacher and H. Sedlmaier, Eur. J. Biochem., 1985, 151, 49
- 528. W. D. Beinert, H. Rüterjans and F. Müller, Eur. J. Biochem., 1985, 152, 573.
- 529. P. N. Sanderson, R. D. Farrant, J. C. Lindon and P. Barraclough, Magn. Reson. Chem., 1990, 28, 874.
- 530. M. Liu, R. D. Farrant, J. C. Lindon and P. Barraclough, Spectrosc. Lett., 1991, 24, 665.
- 531. G. A. Webb and M. Witanowski, Proc. Indian Acad. Sci., 1985, 94, 241.
- 532. M. Witanowski, W. Sicińska, S. Biernat and G. A. Webb, J. Magn. Reson., 1991, 91, 289.
- M. Witanowski, W. Sicińska, Z. Grabowski and G. A. Webb, Magn. Reson. Chem., 1990, 28, 988.
- 534. I. Ando and G. A. Webb, Org. Magn. Reson., 1981, 15, 111.
- 535. I. A. Koppel, V. A. Eiber, J. B. Koppel and T. J. Pehk, Org. Reactivity, 1988, 25, 58.
- 536. B. Tiffon, J. Guillerez and B. Ancian, Magn. Reson. Chem. 1985, 23, 460.
- Yukio Sasaki, Shin-ichi Watanabe and Yozo Kinoshita, Acad. Rep. Tokyo Inst. Polytech., 1988, 11, 42.
- 538. N. S. Rao, M. M. Das, G. B. Rao and D. Ziessow, Spectrosc. Lett., 1985, 18, 827.
- 539. S. Toppet, J. De Taeye and Th. Zeegers-Huyskens, J. Phys. Chem., 1988, 92, 6819.
- 540. A. M. Avédikian, D. Besserre and R. Spies, J. Chim. Phys., 1988, 85, 597.
- 541. A. M. Avédikian, D. Besserre and R. Spies, J. Chim. Phys., 1989, 86, 625.
- 542. E. Bojarska-Olejnik, L. Stefaniak, G. A. Webb and I. A. Sadler, Bull. Pol. Acad. Sci.: Chem., 1987, 35, 81.

- M. Schlabach, B. Wehrle, H. H. Limbach, E. Bunenberg, A. Knierzinger, A. Y. L. Shu,
 B. R. Tolf and C. Djerassi, J. Am. Chem. Soc., 1986, 108, 3856.
- 544. G. Otting, H. Rumpel, L. Meschede, G. Scherer and H. H. Limbach, Ber. Bunsenges. Phys. Chem., 1986, 90, 1122.
- 545. H. H. Limbach and B. Wehrle, Fresenius Z. Anal. Chem., 1987, 327, 61.
- 546. G. Scherer and H. H. Limbach, J. Am. Chem. Soc., 1989, 111, 5946.
- 547. P. B. Cho, F. F. Kadlubar, S. J. Culp and F. E. Evans, Chem. Res. Toxicol., 1990, 3, 445.
- 548. J. A. Connor, R. J. Kennedy, H. M. Dawes, M. B. Hursthouse and N. P. C. Walker, J. Chem. Soc. Perkin Trans. 11, 1990, 203.
- 549. B. Clement and T. Kämpchen, Chem. Ber., 1986, 119, 1101.
- I. Ya. Mainagashev, O. P. Petrenko, V. V. Lapachev, M. A. Fedotov, I. K. Korobeinicheva and V. P. Mamaev, Khim. Geterosikl. Soedin., 1988, 4, 514.
- V. V. Lapachev, A. O. Zagulyaeva, O. P. Petrenko, S. V. Bichkov, V. I. Mamatyuk and V. P. Mamaev, *Tetrahedron*, 1985, 41, 4897.
- 552. V. V. Lapachev, S. A. Stekhova, I. Ya. Mainagashev, M. A. Fedotov, V. E. Khall and V. P. Mamaev, *Khim. Geterotsikl. Soedin.*, 1986, 802.
- 553. V. V. Lapachev, M. A. Fedotov, V. P. Mamaev, L. P. Prikazchikova, V. M. Khutova and V. M. Cherkasov, Zh. Org. Khim., 1986, 22, 2185.
- 554. Masahito Niibe and Yoshio Nakamura, J. Phys. Chem., 1984, 88, 5608.
- K. Kanamori, B. D. Ross, N. A. Farrow and F. Parivar, *Biochim. Biophys. Acta*, 1991, 1096, 270.
- 556. K. Kanamori, B. D. Ross and F. Parivar, J. Magn. Reson., 1991, 93, 319.
- 557. N. E. Preece, J. K. Nicholson and J. A. Timbrell, Biochem. Pharmacol., 1991, 41, 1319.
- 558. Mao Xian, Xu Guangzhi, Shen Qifeng, Lu Xiaoming and Liu Jun, Chin. J. Microwave. Radio-freq. Spectrosc. 1986, 3, 9.
- 559. Zhang Xitan and Li Deqian, Fenxi Huaxue, 1991, 19, 353.
- 560. G. C. K. Roberts and J. Feeney, Biochemistry, 1991, 30, 6330.
- 561. B. P. Bammel and R. F. Evilia, Inorg. Chem., 1984, 23, 1574.
- 562. Mao Xian, Zhao Luji, Xu Guangzhi and Tang Yougi, Acta Physico-Chim. Sin., 1987, 3,
- 563. Mamoru Takasuka and Yoshihiro Terui, J. Chem. Soc. Perkin Trans. II, 1984, 1545.
- A. Schanck, R. Brasseur, M. P. Mingeot-Leclercq and P. M. Tulkens, Magn. Reson. Chem., 1992, 30, 11.
- 565. S. Akoka, C. Tellier and S. Poignant, Biochemistry, 1986, 25, 6972.
- 566. O. Lutz, T. Erata, H. Förster and D. Müller, Naturwissenschschaften, 1986, 73, 97.
- C. F. Poole, B. R. Kersten, S. S. J. Ho, M. E. Coddens and K. G. Furton, J. Chromatogr., 1986, 352, 407.
- 568. A. C. Watterson, E. Parkeenvincha, D. N. Chin and J. C. Salamone, *Polymer*, 1991, 87.
- 569. Yang Li, Liu Peigi, Kong Suling, Dong Ying and Chen Yaozu, Chem. J. Chin. Univ., 1987, 8, 255.
- 570. E. Kupče, B. Wrackmeyer and E. Lukevics, Magn. Reson. Chem., 1991, 29, 444.
- K. S. Anderson, W. M. Kati, Qi-Zhuang Ye, Jun Liu, C. T. Walsh, A. J. Benesi and K. A. Johnson, J. Am. Chem. Soc., 1991, 113, 3198.
- E. Grech, L. Stefaniak, I. Ando, H. Yoshimizu and G. A. Webb, Bull. Chem. Soc. Jpn, 1991, 64, 3761.
- 573. D. E. Axelson and S. L. Blake, J. Polym. Sci. Polym. Chem. Ed., 1985, 23, 2507.
- 574. G. G. Furin, M. A. Fedotov, G. G. Yakobson and A. V. Zibarev, J. Fluorine Chem., 1985, 28, 273.
- 575. A. Thangaraj, P. R. Rajamohanan, P. M. Suryavanshi and S. Ganapathy, J. Chem. Soc., Chem. Commun., 1991, 493.

- 576. Chin Yu and G. C. Levy, Org. Magn. Reson., 1984, 22, 131.
- 577. S. G. Ward and R. C. Taylor, Magn. Res. Intr. Adv. Topics and Appl. to Fossil Energy, 1984, 767.
- 578. S. J. Berners-Price and P. W. Kuchel, J. Inorg. Biochem., 1990, 38, 305.
- 579. S. J. Berners-Price and P. W. Kuchel, J. Inorg. Biochem., 1990, 38, 327.
- M. S. Morales-Rios, R. E. del Rio and P. Joseph-Nathan, *Magn. Reson. Chem.*, 1989, 27, 1039.
- 581. A. V. Zibarev, M. A. Fedotov and G. G. Furin, Izv. Akad. Nauk SSSR, Ser. Khim., 1989,
- 582. S. K. Singh, Y. Singh, A. K. Rai and R. C. Mehrotra, *Polyhedron*, 1989, 8, 633.
- 583. E. E. Liepins, M. W. Petrowa, Ya. Ya. Paulinsh, I. Ya. Gubele and E. Yu. Gubriniece, Izv. Akad. Nauk Latv. SSR, Ser. Khim., 1987, 495.
- 584. I. J. Chervin, V. S. Nosova, V. F. Rudchenko, W. I. Schevchenko and R. G. Kostyanovskii, *Khim. Geterosikl. Soedin.*, 1988, 3, 396.
- 585. H. F. Sleiman, B. A. Arndtsen and L. McElwee-White, Organometallics, 1991, 10, 541.
- 586. Wang Qi-Wen, Chen Chao-Huan, Zhao En-Yi, Chen Yao-Huan and Sheng Huai-Yu, *Acta Chim. Sinica*, 1986, 332.
- 587. A. Lyčka, J. Jirman and A. Cee, Magn. Reson. Chem., 1990, 28, 408.
- 588. U. Himmelreich, R. Hässner, P. Thomas, F. Tschwatschal and R. Borsdorf, *Monats. Chem.*, 1990, 121, 923.
- 589. D. W. Duff and G. E. Maciel, Macromolecules, 1991, 24, 651.
- 590. M. P. Sibi, Magn. Reson. Chem., 1991, 29, 401.
- J. D. Bell, J. A. Lee, H. A. Lee, P. J. Sadler, D. R. Wilkie and R. H. Woodham, *Biochim. Biophys. Acta*, 1991, 1096, 101.
- 592. S. M. Zemskova, I. M. Oglezneva, M. A. Fedotov, L. K. Glukhikh and S. V. Larionov, *Izv. Sibir. Otdel. AN SSSR, Ser. Khim.*, 1990, 89.
- 593. A. Lyčka and K. Palát Jr., Collect. Czech. Chem. Commun., 1991, 56, 1505.
- 594. O. Pytela, J. Jirman and A. Lyčka, Collect. Czech. Chem. Commun., 1989, 54, 2399.
- A. J. Bennet, V. Somayaji, R. S. Brown and B. D. Santarsiero, J. Am. Chem. Soc., 1991, 113, 7563.
- Ichiro Tajima, Takao Suda, Minoru Yamamoto, Kozo Satta and Hidetake Morimoto, Polym. J., 1988, 20, 919.
- A. J. Deeming, G. P. Proud, H. M. Dawes and M. B. Hursthouse, J. Chem. Soc. Dalton Trans., 1958, 2475.
- H. Komber, L. Jakisch, S. Zschoche, H. Möbus, M. Rätzsch and D. Scheller, Makromol. Chem., Rapid Commun., 1991, 12, 547.
- Yu. E. Kirsh, S. A. Yakimov, L. A. Sibel'dina and T. M. Karaputadze, Zh. Fiz. Khim., 1988, 62, 347.
- 600. I. Hermecz, M. Kajtār, K. Simon, T. Breining, P. R. Surjan, G. Töth and Z. Mêszāros, J. Org. Chem., 1985, 50, 2918.
- J. Młochowski, L. Syper, L. Stefaniak, W. Domalewski, W. Schilf and G. A. Webb, J. Mol. Struct., 1992, 268, 311.
- 602. R. M. Davidson, G. D. Byrd, E. White, S. A. Margolis and B. Coxon, Magn. Reson. Chem., 1986, 24, 929.
- J. Schraml, H. M. Boldhaus, F. Erdt, E. W. Krahe and C. Bliefert, J. Organomet. Chem., 1991, 406, 299.
- 604. P. G. De Benedetti, D. Iarossi, M. C. Menziani, C. Frassineti and A. Benedetti, J. Mol. Struct., 1988, 175, 37.
- 605. L. B. Dugad and J. T. Gerig, Biochemistry, 1988, 27, 4310.

- G. Philippossian, D. H. Welti, R. Fumeaux, U. Richli and K. Anantharman, J. Label. Comp. Radiopharm., 1989, 27, 1267.
- 607. D. E. Robertson, S. Lesage and M. F. Roberts, Biochim. Biophys. Acta, 1989, 992, 320.
- G. Uccello-Barretta, C. Rosini, D. Pini and P. Salvadori, J. Am. Chem. Soc., 1990, 112, 2707.
- 609. B. P. Pammel and R. F. Evilia, *Inorg. Chim. Acta*, 1984, 81, L5.
- 610. Masunobu Maeda, Kohji Okada and Kaname Ito, J. Inorg. Biochem., 1991, 41, 143.
- 611. A. J. L. Cooper and A. S. Gelbard, Biochem. J. Lett., 1991, 276, 271.
- 612. N. Farrow, K. Kanamori, B. D. Ross and F. Parivar, Biochem. J. Lett., 1991, 276, 272.
- 613. S. K. Sarkar, Yukio Hiyama, C. H. Niu, P. E. Young, J. T. Gerig and D. A. Torchia, Biochemistry, 1987, 26, 6793.
- 614. Yukio Hiyama and D. A. Torchia, NMR Applications in Biopolymers (J. W. Finley et al., eds), Plenum Press, New York, 1990, p. 273.
- 615. P. Krumbiegel, W. Grûnder, K. Buchali and T. Keller, Isotopenpraxis, 1990, 26, 518.
- 616. M. Neeman, D. Aviv, H. Degani and E. Galun, Plant. Physiol., 1985, 77, 374.
- 617. A. Lapidot, 3rd. Eur. Congr. Biotechnol., 1984, 2, 319.
- 618. L. Inbar and A. Lapidot, J. Biol. Chem., 1988, 263, 16014.
- 619. L. Inbar and A. Lapidot, J. Bacteriol., 1988, 170, 4055.
- 620. Z. E. Kahana and A. Lapidot, Anal. Biochem., 1985, 149, 549.
- 621. B. A. Lewis, S. Cayley, S. Padmanabhan, V. M. Kolb, V. Brushaber, C. F. Anderson and M. T. Record Jr, J. Magn. Reson., 1990, 90, 612.
- 622. B. A. Lewis, S. Cayley, S. Padmanabhan, V. M. Kolb, V. Brushaber, C. F. Anderson and M. T. Record Jr, J. Magn. Reson., 1990, 90, 612.
- 623. Yiqing Feng, A. J. Wand and S. G. Sligar, Biochemistry, 1991, 30, 7711.
- 624. J. M. Schmidt, H. Thüring, A. Werner, H. Rüterjans, R. Quaas and U. Hahn, Eur. J. Biochem., 1991, 197, 643.
- 625. M. D. Carr, B. Birdsall, T. A. Frenkiel, C. J. Bauer, J. Jimenez-Barbero, V. I. Polshakov, E. McCormick, G. C. K. Roberts and J. Feeney, *Biochemistry*, 1991, 30, 6330.
- 626. W. J. Fairbrother, J. Cavanagh, H. J. Dyson, A. G. Palmer, S. L. Sutrina, J. Reizer, M. H. Saier Jr. and P. E. Wright, *Biochemistry*, 1991, 30, 6896.
- 627. G. M. Smith, Liping P. Yu and D. J. Domingues, Biochemistry, 1987, 26, 2202.
- 628. L. P. Yu and G. M. Smith, Biochemistry, 1990, 29, 2920.
- 629. G. M. Smith and Liping P. Yu, Biochim. Biophys. Acta, 1991, 1058, 75.
- 630. R. H. Griffey, A. G. Redfield, L. P. McIntosh, T. G. Oas and F. W. Dalquist, J. Am. Chem. Soc., 1986, 108, 6816.
- 631. P. Schrader, S. Opella, J. Richards and J. Tomich, Frontiers of NMR in Molecular Biology. R. Liss, New York, 1990, p. 109.
- T. Karayannis, I. P. Gerothanassis, M. Sakarellos-Daitsiotis, C. Sakarellos and M. Marraud, Biopolymers, 1990, 29, 423.
- 633. F. Martin, FEBS Letters, 1985, 182, 350.
- 634. F. Martin, G. R. Stewart, I. Genetet and F. Le Tacon, New Phytol., 1986, 102, 85.
- 635. D. L. Parry, Marine Biol., 1985, 87, 219.
- 636. H. P. Juretschke, Arch. Int. Physiol. Biochem., 1985, 93, 141.
- 637. K. Kanamori, R. L. Weiss and J. D. Roberts, J. Biol. Chem., 1988, 263, 2817.
- 638. Byong-Seok Choi and M. F. Roberts, Biochim. Biophys. Acta, 1987, 928, 259.
- 639. N. A. Farrow, K. Kanamori, B. D. Ross and F. Parivar, Biochem. J. 1990, 270, 473.
- 640. T. Yoneyama, H. Kouchi and O. Ito, Radioisotopes, 1988, 37, 475.
- 641. J. G. Jones and E. Bellion, J. Biol. Chem., 1991, 266, 11705.
- 642. A. Lapidot and L. Inbar, *The Target of Penicillin*, Walter de Gruyter, Berlin, New York, 1983, p. 79.

- D. G. Reid, D. D. Doddrell, D. H. Williams and K. R. Fox, *Biochim. Biophys. Acta*, 1984, 798, 111.
- 644. K. Inouye, T. Hayakawa, Y. Kobayashi, H. Sugeta and Y. Kyogoku, *Peptide Chemistry* (N. Izumiya, ed), 1984, p. 121.
- 645. V. J. Robinson, P. J. Coles, R. A. Smith and A. Krantz, J. Am. Chem. Soc., 1991, 113, 7760.
- 646. D. Neri, G. Otting and K. Wüthrich, J. Am. Chem. Soc., 1990, 112, 3663.
- 647. B. E. Schwederski, H. D. Lee and D. W. Margerum, Inorg. Chem., 1990, 29, 3569.
- 648. R. Müller, J. D. Wallis and W. von Philipsborn, Angew. Chem., 1985, 24, 513.
- 649. P. Crotti, M. Chini, G. Uccello-Barretta and F. Macchia, J. Org. Chem., 1989, 54, 4525.
- 650. S. C. V. Au-Yeung, J. Magn. Reson., 1991, 92, 10.
- 651. S. Modi, D. V. Behere and S. Mitra, Biochemistry, 1989, 28, 4689.
- 652. S. Modi, S. S. Deodhar, D. V. Behere and S. Mitra, Biochemistry, 1991, 30, 118.
- 653. S. Modi, D. V. Behere and S. Mitra, J. Biol. Chem., 1989, 264, 19677.
- 654. E. Kupce, E. Upena, M. Trusule and E. Lukevics, Polyhedron, 1989, 8, 2641.
- 655. E. Kupche, E. Koshkina, M. Trushule and E. Lukevics, Latv. PSR Zinat. Akad. Vest., Khim. Ser., 1989, 751.
- 656. B. W. Tattershall, J. Chem. Soc., Chem. Commun., 1989, 216.
- 657. I. A. Grigor'ev, L. B. Volodarsky, A. Z. Gogolev and R. Z. Sagdeev, Chem. Phys. Lett., 1985, 122, 46.
- 658. D. W. Aksnes, T. Brekke and K. Maartmann-Moe, Acta Chem. Scand., 1991, 45, 138.
- Shyamalava Mazumdar, Okhil K. Medhi and Samaresh Mitra, J. Chem. Soc. Dalton Trans., 1990, 1057.
- B. J. Gour-Salin, A. C. Storer, A. Castelhano, A. Krantz and V. Robinson, Enzyme Microbiol. Technol., 1991, 13, 408.
- 661. E. H. Ellison and D. B. Marshall, J. Phys. Chem., 1991, 95, 808.
- 662. M. Ishii, S. Funahashi, K. Ishihara and M. Tanaka, Bull. Chem. Soc. Jpn, 1989, 62, 1852.
- 663. M. Fourmigue, H. Eggert and K. Bechgaard, J. Org. Chem., 1991, 56, 4858.
- 664. L. Stefaniak and M. Witanowski, Bull. Pol. Acad Sci.: Chem., 1987, 35, 305.
- L. Stefaniak, M. Witanowski, U. Mahmoud, J. D. Roberts and G. A. Webb, J. Crystallogr. Spectrosc. Res., 1989, 19, 159.
- 666. A. Barszczewicz, M. Jaszuński and L. Stefaniak, Chem. Phys. Lett., 1991, 186, 313.
- 667. J. Elguero, J. L. G. de Paz, P. Goya, J. A. Páez and I. Rozas, Heterocycles, 1990, 31, 197.
- 668. J. A. Cano Gorini, J. Farrás, M. Feliz, S. Olivella, A. Solé and J. Vilarrasa, J. Chem. Soc., Chem. Commun., 1986, 959.
- 669. M. H. Zehfus, M. D. Reily, E. L. Ulrich, W. M. Westler and J. L. Markley, Arch. Biochem. Biophys., 1990, 276, 369.
- 670. R. S. Rowlett, T. Klysa and W. W. Shiraki, J. Label. Comp. Radiopharm., 1990, 28, 1437.
- W. Schilf, L. Stefaniak, M. Witanowski and G. A. Webb, Bull. Pol. Ac. Sci. Chem., 1985,
 33, 347.
- 672. L. Stefaniak, B. Kamieński, M. G. Voronkov, L. I. Łarina, V. A. Łopyrev and G. A. Webb, Bull. Pol. Acad. Sci.: Chem., 1991, 39, 317.
- 673. V. V. Kozlov, M. E. Niyazymbetov, M. S. Pevzner, B. I. Ugrak and V. A. Petrosyan, Izv. Akad. Nauk SSSR, Ser. Khim., 1990, 2814.
- 674. H. Duddeck, P. Wagner, D. Müller and J. C. Jászbereńyi, Magn. Reson. Chem., 1990, 28, 549.
- W. Kożminski, J. Jazwiński, L. Stefaniak and G. A. Webb, Magn. Reson. Chem., 1990, 28, 1027.
- 676. W. Kozmiński, J. Jazwiński, L. Stefaniak and G. A. Webb, J. Mol. Struct., 1991, 243, 369.
- 677. Seiko Ito and Yoshiko Yano, Bull. Chem. Soc. Jpn, 1984, 57, 2824.

- 678. D. Jalabert, J. B. Robert, H. Roux-Buisson, J. P. Kintzinger, J. M. Lehn, R. Zinzius, D. Canet and P. Tekely, *Europhys. Lett.*, 1991, 15, 435.
- 679. B. Birdsall, J. De Graw, J. Feeney, S. Hammond, M. S. Searle, G. C. K. Roberts, W. T. Colwell and J. Crase, FEBS Lett., 1987, 217, 106.
- E. Weilbacher, N. Helle, M. Elsner, H. Kurreck, F. Müller and R. D. Allendoerfer, Magn. Reson. Chem., 1988, 26, 64.
- 681. A. W. Afonin, W. K. Woronow, E. I. Enikeewa and M. A. Anbrijankow, Izv. Akad. Nauk SSSR, Ser. Khim., 1987, 4, 769.
- 682. E. Lukevics, E. Liepins, I. Segal and M. Fleisher, J. Organomet. Chem., 1991, 406, 283.
- 683. A. Lyčka, J. Holeček, A. Sebald and I. Tkač, J. Organomet. Chem., 1991, 409, 331.
- A. Abbotto, V. Alanzo, S. Bradamante and G. A. Pagani, J. Chem. Perkin Trans. II, 1991, 481.
- 685. C. Sanner, P. Macheroux, H. Rüterjans, F. Müller and A. Bacher, Eur. J. Biochem., 1991, 196, 663.
- 686. Fu-Yung Huang, Qing-Xian Yang and Tai-huang Huang, FEBS Lett., 1991, 289, 231.
- 687. X. Gao and R. A. Jones, Nucleos. Nucleot., 1988, 6, 433.
- 688. L. C. Sowers, D. N. Mahaskar, T. A. Khwaja and M. F. Goodman, Nucleos. Nucleot., 1989, 8, 23.
- 689. Chien-Hua Niu, Anal. Biochem., 1984, 139, 404.
- 690. B. Fera, B. Singrûn, G. Kupferschmitt, J. Schmidt, F. Buck and H. Rüterjans, *Nucleos. Nucleot.*, 1987, 6, 477.
- 691. X. Gao and R. A. Jones, J. Am. Chem. Soc., 1987, 109, 3169.
- 692. Chuan Wang, Xiolian Gao and R. A. Jones, J. Am. Chem. Soc., 1991, 113, 1448.
- 693. F. E. Evans and R. A. Levine, J. Biomol. Struct. Dyn., 1986, 3, 923.
- 694. J. Glushka, O. Bârzu, R. S. Sarfati, V. K. Kansal and D. Cowburn, Biochem. Biophys. Res. Commun., 1990, 172, 432.
- G. Barbarella, M. L. Copabianco, L. Tondelli and V. Tugnoli, Can. J. Chem., 1990, 68, 2033
- 696. G. Remaud, X. X. Zhou, C. J. Welch and J. Chattopadhyaya, Nucleic. Acids Res. Symp. Ser., 1987, 169.
- 697. Chien-Hua Niu, Kyou-hoon Han, H. J. C. Yeh and S. Black, Biochem. Biophys. Reson. Commun., 1987, 148, 456.
- 698. T. L. James, P. Bendel, J. W. Keepers and J. E. Taylor, Bull. Magn. Reson., 1983, 5, 165.
- 699. Chin Hsiung Lin and L. H. Hurley, Biochemistry, 1990, 29, 9503.
- 700. B. P. Cho and F. E. Evans, Nucleic Acid Res., 1991, 19, 1041.
- 701. A. Nyilas, A. Földesi and J. Chattopadhyaya, Nucleos. Nucleot., 1988, 7, 787.
- 702. N. J. Kos, H. Jongejan and H. C. van der Plas, Gazz. Chim. Ital., 1987, 117, 369.
- H. Bazin, J. Chattopadhyaya, R. Datema, A. C. Ericson, G. Gilliam, N. G. Jahansson,
 J. Hansen, R. Koshida, K. Molling, B. Öberg, G. Remaud, G. Steing, L. Vrang,
 B. Wahren and J. C. Wu, Biochem. Pharmacol., 1989, 38, 109.
- 704. C. Giessner-Prettre, J. Biomol. Struct. Dynam., 1984, 2, 233.
- 705. B. Thomas and G. Grossmann, Usp. Khim., 1986, 55, 1124.
- 706. B. T. Golding, P. K. Slaich and W. P. Watson, J. Chem. Soc., Chem. Commun., 1986, 515.
- 707. C. W. Allen, P. F. Kelly and J. D. Woollins, J. Chem. Soc. Dalton Trans, 1991, 1343.
- 708. A. Apblett, T. Chivers, A. W. Cordes and R. Vollmerhaus, Inorg. Chem., 1991, 30, 1392.
- M. P. Hartshorn, W. T. Robinson, G. W. Wright and Cheng Lin Yong, *Austr. J. Chem.*, 1989, 42, 1569.
- 710. L. L. Bondoc and R. Timkovich, J. Biol. Chem., 1989, 264, 6134.
- T. Yokoyama, T. Komaki, H. Sato, R. W. Taft and F. Anvia, J. Org. Chem., 1989, 54, 3983.

- G. N. Marchenko, V. F. Sopin, V. I. Kovalenko, N. M. Azancheev, E. N. Sergeev and E. M. Belova, Vysokomol. Soed. Ser. B, 1988, 30, 295.
- 713. I.S. Pronin and A.A. Vashman, Zh. Neorg. Khim., 1987, 32, 603.
- 714. G.K. Surya Prakash, L. Heiliger and G. A. Olah, Inorg. Chem., 1990, 29, 4965.
- A. Fratiello, V. Kubo-Anderson, S. Azimi, E. Marinez, D. Matejka, R. Perrigan and B. Yao, J. Soln Chem., 1991, 20, 893.
- K. H. von Locquenghien, R. Réau and G. Bertrand, J. Chem. Soc., Chem. Commun., 1991, 1192.
- G. A. Olah, R. Herges, J. D. Felberg and G. K. Surya Prakash, J. Am. Chem. Soc., 1985, 107, 5282.
- Wang Qi-Wen, Chen Chao-Huan, Zhao En-Yi, Chen Yao-Huan and Sheng Huai-Yu, Acta Chim. Sin., 1985, 43, 1101.
- 719. Wang Qi-Wen, Chen Chao-Huan, Zhao En-Yi, Chen Yao-Huan and Sheng Huai-Yu, Huaxue Xuebao, 1985, 43, 1103.
- 720. A. Lyčka and V. Machaek, Dyes and Pigments, 1986, 7, 171.
- 721. J. Jirman and A. Lyčka, Dyes and Pigments, 1987, 8, 55.
- 722. A. Lyčka, J. Jirman and J. Podstata, Dyes and Pigments, 1987, 8, 465.
- 723. A. Lyčka and J. Jirman, Dyes and Pigments, 1987, 8, 315.
- 724. A. Lyčka, T. Liptaj and J. Jirman, Collect. Czech. Chem. Commun., 1987, 52, 727.
- Kiyoshi Yamamoto, Kiyoshi Nakai and Toshio Kawaguchi, *Dyes and Pigments*, 1989, 11,
 173.
- A. Lyčka, M. Nečas, J. Jirman, J. Starka and B. Schneider, Collect. Czech. Chem. Commun., 1990, 55, 193.
- 727. A. Lyčka and H. Mustroph, J. Prakt. Chem., 1989, 331, 11.
- 728. A. Lyčka, Dyes and Pigments, 1990, 12, 179.
- 729. S. J. Bell, E. P. Mazzola and B. Coxon, Dyes and Pigments, 1989, 11, 93.
- 730. S. Simova, R. Radeglia and E. Fanghänel, J. Prakt. Chem., 1983, 5, 863.
- D. E. V. Wilman, Rational Approaches to the Design of Bioactive Compounds (G. Silipo and A. Vittoria, eds) Elsevier Amsterdam, 1991, p. 159.
- 732. S. C. F. Au-Yeung, K. W. Kwong and R. J. Buist, J. Am. Chem. Soc., 1990, 112, 7482.
- A. R. Butler, A. M. Calsy-Harrison, C. Glidewell and I. L. Johnson, *Inorg. Chim. Acta*, 1988, 146, 187.
- 734. M. A. Fedotov and A. V. Belyaev, Koord, Khim., 1990, 16, 103.
- S. P. Khranenko, M. A. Fedotov, A. V. Belyaev and A. B. Venediktov, Koord. Khim., 1990, 16, 991.
- A. B. Venediktov, S. V. Korenev, M. A. Fedotov and A. V. Belyaev, Koord. Khim., 1990, 16, 1400.
- 737. M. A. Fedotov, S. V. Korenev and A. V. Belyaev, Koord. Khim., 1990, 16, 1272.
- 738. J. P. Gouesnard, Bull. Soc. Chim. France, 1989, 88.
- 739. J. Oddershede and J. Geersten, J. Chem. Phys., 1990, 92, 6036.
- 740. W. Oehme, W. Meiler, J. R. Lochmann and H. Siegel, Z. Chem., 1987, 27, 431.
- 741. C. J. Jameson, A. K. Jameson and M. A. ter Horst, J. Chem. Phys., 1991, 95, 5799.
- 742. I. S. Pronin and A. A. Washman, Zh. Neorg. Khim., 1983, 28, 1606.
- G. V. Lagodzinskaya, N. G. Yunda, E. P. Kirpichev, A. I. Kazakov, Yu. I. Rubcov,
 V. O. Zavelskii and G. B. Manelic, Chim. Fiz., 1989, 8, 236.
- 744. Jun-Jie Yin and J. S. Hyde, J. Chem. Phys., 1989, 91, 6029.
- 745. S. Donovan-Mtunzi and R. L. Richards, J. Chem. Soc. Dalton Trans., 1984, 1329.
- L. Kozerski, K. Kamieńska-Trela, L. Kania and W. von Philipsborn, Helv. Chim. Acta, 1983, 66, 2113.
- 747. H. D. Franken, H. Rüterjans and F. Müller, Eur. J. Biochem., 1984, 138, 481.

- 748. J. D. Halliday, P. E. Bindner and Shahsultan Padamshi, Can. J. Chem., 1984, 62, 1258.
- 749. W. Kohl, H. Irschik, H. Reichenbach and G. Höfle, Liebigs Ann. Chem., 1984, 1088.
- B. N. Hasanow, A. W. Kalinin, A. Ya. Schteyschneyber, A. A. Blumenfeld, S. L. Joffe and W. A. Tartakowskii, *Izv. Akad. Nauk SSSR Ser. Chim.*, 1984, 1296.
- 751. G. L. Hillhouse and J. E. Bercaw, J. Am. Chem. Soc., 1984, 106, 5472.
- H. Sierzputowska-Gracz, M. Wiewiórowski, L. Kozerski and W. von Philipsborn, Nucleic. Acids Res., 1984, 12, 6247.
- 753. A. O. K. Nieminen, M. Rautio and E. Rahkamaa, Magn. Reson. Chem. 1985, 23, 419.
- 754. J. Mistol, N. Grossmann, H. Pietsch and E. Fanghänel, J. Prakt. Chem., 1985, 327, 371.
- 755. B. Clement and T. Kämpchen, Chem. Ber., 1985, 118, 3481.
- 756. W. W. Bachovchin, Proc. Natl Acad. Sci. USA, 1985, 82, 7948.
- 757. B. Wrackmeyer, J. Magn. Reson., 1986, 66, 172.
- 758. J. Deeming and S. Donovan-Mtunzi, J. Chem. Soc. Dalton Trans., 1985, 1609.
- 759. I. I. Czerwin, V. F. Rubchenko, S. M. Ignatov and R. G. Kostyanovkii, Izv. Akad. Nauk Ser. Khim., 1986, 3, 730.
- 760. Yu Juin and Ye Tingao, Xuaxue Tongbao, 1985, 11, 14.
- G. M. Blackburn, B. E. Mann, B. F. Taylor and A. F. Worrall, Eur. J. Biochem., 1985, 153, 553.
- 762. V. Mlynárik, Prog. NMR Spectrosc., 1986, 18, 277.
- Shin-Ichiro Takahashi, Ei-Ichiro Suzuki and Nobuya Nagashima, Bull. Chem. Soc. Jpn, 1986, 59, 1129.
- 764. J. Vervoort, F. Müller, S. G. Mayhew, W. A. M. van den Berg, C. T. W. Moonen and A. Bacher, *Biochemistry*, 1986, 25, 6789.
- G. Otting, H. Rumpel, L. Meschede, G. Scherer and H. H. Limbach, Ber. Bunsenges Phys. Chem., 1986, 90, 1122.
- 766. L. Kozerski and A. Krówczyński, Magn. Reson. Chem., 1987, 25, 46.
- P. C. Prabhakaran, Nam-Tae Woo, P. Yorgey and S. J. Gould, Tetrahedron Lett., 1986, 27, 3815.
- 768. Bhim Sen Saraswat and J. Mason, Polyhedron, 1986, 5, 449.
- 769. J. Geertsen, J. Oddershede and G. E. Scuseria, J. Chem. Phys., 1987, 87, 2138.
- 770. P. Ruostesuo, A. M. Häkkinen and T. Mattila, Magn. Reson. Chem., 1987, 25, 189.
- 771. J. Kreutzmann, M. Michalik and B. Thomas, Z. Chem., 1986, 26, 404.
- L. N. Kurkovskaya, S. N. Krasnokutskii, V. P. Shabunova, R. N. Akhvlediani and N. N. Suvorov, Zh. Org. Khim., 1986, 22, 1546.
- L. N. Kurkovskaya, S. N. Krasnokutskii, L. I. Dmitrevskaya and N. N. Suvorov, Dokl. Akad. Nauk SSSR, 1986, 291, 381.
- 774. R. E. Reddick and G. L. Kenyon, J. Am. Chem. Soc., 1987, 109, 4380.
- Shoichi Ide, Kazuhisa Iwasawa, Akihiro Yoshino, Tadayoshi Yoshida and Kensuke Takahashi, Magn. Reson. Chem., 1987, 25, 675.
- 776. H. Haas and M. Willert-Porada, Z. Anorg. Allg. Chem., 1987, 545, 24.
- 777. J. Jirman and A. Lyčka, Collect. Czech. Chem. Commun., 1987, 52, 2474.
- 778. J. Kizmárik and A. Lyčka, Pharmazie, 1987, 42, 697.
- 779. F. Boberg, A. Paetz, B. Bruchmann and A. Garming, Phosph. Sulph., 1987, 33, 99.
- J. K. M. Sanders, B. K. Hunter, C. J. Jameson and G. Romeo, Chem. Phys. Lett., 1988, 143, 471.
- 781. B. Golankiewicz, W. Folkman, H. Rosemeyer and F. Seela, *Nucleic Acids Res.*, 1987, 15, 9075
- G. Albertin, S. Antoniutti, G. Pelizzi, F. Vitali and E. Bordignon, *Inorg. Chem.*, 1988, 27, 829.

- A. Lyčka, L. Havlicková, A. Kolonicny and J. Jirman, Collect. Czech. Chem. Commun., 1987, 52, 736.
- 784. N. Müller and V. V. Lapachev, Monats. Chem., 1987, 118, 1201.
- 785. E. M. M. van der Berg, A. U. Baldew, A. T. J. W. de Goede, J. Raap and J. Lugtenburg, Recl. Trav. Chim. Pays-Bas, 1988, 107, 73.
- 786. E. T. K. Haupt, H. T. Dieck and P. R. Bontchev, Z. Naturforsch., 1987, 42b, 1419.
- D. A. Brown, W. K. Glass, R. Mageswaran and B. Girmay, Magn. Reson. Chem., 1988, 26, 970.
- 788. A. Haas and M. Willert-Porada, Z. Anorg. Allg. Chem., 1988, 560, 169.
- L. Meschede, D. Gerritzen and H. H. Limbach, Ber. Bunsenges. Phys. Chem., 1988, 92, 469.
- 790. V. Mlynárik, J. Magn. Reson., 1988, 79, 322.
- V. V. Lapachev, I. Ya. Mainagashev and N. Myuller, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 202.
- 792. K. M. Larsson and J. Kowalewski, Spectrochim. Acta, 1987, 43A, 545.
- 793. J. Uzawa and K. Anazi, Liebiegs Ann. Chem., 1988, 1195.
- 794. I. P. Sekacis, Yu. E. Ancanc, D. A. Biseniece and G. I. Chipens, Izv. Akad. Nauk Litv. SSR, Ser. Khim., 1988, 478.
- 795. J. Pfeiffer, W. Maringgele, M. Noltemeyer and A. Meller, Chem. Ber., 1989, 122, 245.
- V. I. Minkin, A. A. Maksimenko, G. K. Mehrotra, A. G. Maslakov, O. E. Kompan,
 I. D. Sadekov, Yu. T. Struchkov and D. S. Yufit, J. Organomet. Chem., 1988, 348, 63.
- P. Goya, M. L. Jimeno, C. Ochoa, I. Rozas and A. Alemany, Spectrosc. Int. J., 1988, 6, 33.
- 798. F. Cristiani, F. A. Devillanova, A. Diaz, F. Isaia and G. Verani, *Spectrosc. Lett.*, 1988, 21, 767.
- 799. G. T. Montelione, M. E. Winkler, P. Rauenbuehler and G. Wagner, J. Magn. Reson., 1989, 82, 198.
- Kurkovskaya, V. S. Velezheva, I. K. Sorokina, L. I. Dmitevskaya and V. G. Zhilnikov, Zh. Org. Khim., 1988, 24, 1541.
- R. G. Kostyanovski, K. G. Kadorkina, I. I. Chervin and I. K. A. Romiero Mal'donado, Khim. Geterosikl. Soedin., 1988, 757.
- L. I. Kononov, G. A. Veinberg, E. Liepins and E. Lukevics, Khim. Geterosikl. Soedin., 1988, 1381.
- 803. A. Kerbal, J. Vebrel, E. Cerutti and B. Laude, J. Chem. Soc. Chem. Commun., 1989, 632.
- 804. M. von Schlabach, H. Rumpel and H. H. Limbach, Angew. Chem., 1989, 101, 84.
- E. Grochowski, J. Winiarski, L. Stefaniak and G. A. Webb, Bull. Pol. Acad. Sci.: Chem., 1991, 39, 257.
- 806. D. E. V. Wilman, Magn. Reson. Chem., 1990, 28, 729.
- 807. M. de la Concepcion Foces-Foces, F. H. Cano, R. M. Claramunt, D. Sanz, J. Catalán, F. Fabero, A. Furchier and J. Elguero, J. Chem. Soc. Perkin Trans. II, 1990, 237.
- 808. A. Lyčka and J. Cizmárik, Pharmazie, 1990, 45, 371.
- 809. T. Chivers, D. D. McIntyre, K. J. Schmidt and H. J. Vogel, J. Chem. Soc., Chem. Commun., 1990, 1341.
- 810. T. Chivers and K. J. Schmidt, J. Chem. Soc., Chem. Commun., 1990, 1342.
- 811. C. M. Adams and W. von Philipsborn, Org. Magn. Reson., 1985, 23, 130.
- A. Fruchier, V. Pellegrin, R. M. Claramunt and J. Elguero, Org. Magn. Reson., 1984, 22, 473.
- Yoshihiro Kuroda, Yasuhiro Fujiwara and Kazuhiro Matsushita, J. Magn. Reson., 1985,
 218.

- 814. A. V. Eremeev, F. D. Polyak, I. A. Vosekalna, I. J. Chervin, Sh. S. Nasibov and R. G. Kostyanovskii, Khim. Geterosikl. Soedin., 1984, 1343.
- L. Leitis, E. Liepins, D. Jansone and M. Shimanskaya, Latv. PSR Zinat. Akad. Vestis. Khim. Ser., 1984, 6, 719.
- 816. K. Michalik, K. Peseke and R. Radeglia, J. Prakt. Chem., 1985, 327, 103.
- 817. Ju. Ju. Popelis, E. E. Liepins and E. Ya Lukevics, Khim. Geterosikl. Soedin., 1985, 1172.
- 818. A. Schmidpeter and B. Wrackmeyer, Z. Naturforsch, 1986, 41b, 553.
- J. Riand, M. T. Chenon, C. C. Tzeng and R. P. Panzica, J. Chem. Soc. Perkin Trans. II, 1986, 931.
- 820. V. K. Jain, J. Mason and R. C. Mehrotra, J. Organomet. Chem., 1986, 309, 45.
- 821. V. K. Jain, J. Mason, B. S. Saraswat and R. C. Mehrotra, Polyhedron, 1985, 4, 2089.
- 822. J. Jirman and A. Lyčka, Chemicky Prumysl, 1987, 482.
- 823. Jun Uzawa and Kentaro Anzai, Can. J. Chem., 1987, 65, 2691.
- 824. G. J. Schrobilgen, J. Chem. Soc. Chem. Commun., 1988, 863.
- 825. J. R. A. Vogt and P. Renz, Eur. J. Biochem., 1988, 171, 655.
- 826. P. G. Jones, H. W. Roesky and J. Schimkowiak, J. Chem. Soc. Chem. Commun., 1988, 730.
- 827. J. Farrás, E. Fos, R. Ramos and J. Vilarrasa, J. Org. Chem., 1988, 53, 887.
- 828. L. Weber and M. Mühlstädt, Z. Chem., 1988, 28, 26.
- 829. D. Lenz, J. Fluorine Chem., 1988, 39, 305.
- 830. I. Sekacis, J. Ancans, D. Biseniece and G. Cipens, Latv. PSR Zinat. Akad. Vestis., Khim. Ser., 1988, 478.
- 831. Kioshi Uchida, Akira Toyama, Yukiko Tamura, Michiaki Sugimura, Fumiyuki Mitsumori, Yukiko Furukawa, Hideo Takeuchi and Issei Harada, Inorg. Chem., 1989, 28, 2067
- 832. W. Holzer and W. von Philipsborn, Magn. Reson. Chem., 1989, 27, 511.
- 833. B. Wrackmeyer, Z. Naturforsch., 1989, 44b, 653.
- L. Stefaniak, M. Witanowski, U. Mahmoud, J. D. Roberts and G. A. Webb, J. Crystallogr. Spectrosc. Res., 1989, 19, 159.
- W. A. Dorokhov, A. R. Amamchyan and W. S. Bogdanov, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 2386.
- Toshiharu Ohta, Koichi Shudo and Toshihiko Okamoto, Tetrahedron Lett., 1984, 25,
 325.
- J. W. Lown, S. M. S. Chauhan, R. R. Koganty and A. M. Sapse, J. Am. Chem. Soc., 1984, 106, 6401.
- 838. B. P. Mikhova, M. F. Simeonov and S. L. Spassov, Magn. Reson. Chem., 1985, 23, 474.
- A. Albinati, H. Moriyama, H. Rüegger, P. S. Pregosin and A. Togni, *Inorg. Chem.*, 1985, 24, 4430.
- 840. F. Terrier, J. C. Halle, P. MacCormack and M. J. Pouet, Can. J. Chem., 1989, 67, 503.
- 841. Z. E. Kahana, A. Gopher, M. Dorsman and A. Lapidot, Anal. Biochem., 1988, 174, 374.
- 842. K. H. Harmon, T. E. Nelson and M. S. Janos, J. Mol. Struct., 1989, 213, 185.
- 843. M. Dargatz, C. Preussler, K. Kellner and E. Klienpeter, Phosp. Sulph. Silic., 1990, 47, 437.
- 844. A. A. Gakh, B. I. Ugrak and V. V. Kiseleva, Izv. Akad. Nauk SR, Ser. Khim., 1990, 2069.
- 845. C. Lopez, R. M. Claramunt, D. Sanz, C. Foces Foces, F. H. Cano, R. Faure, E. Cayon and J. Elguero, *Inorg. Chim. Acta*, 1990, 176, 195.
- 846. Tetsuo Asakura, Yasuo Watanabe and Takuro Itoh, Macromolecules, 1984, 17, 2421.
- 847. H. P. Juretschke and A. Lapidot, Eur. J. Biochem., 1984, 143, 651.
- 848. W. M. Golebiewski and J. D. Spenser, Can. J. Chem., 1985, 63, 2707.
- 849. J. Rana and D. J. Robins, J. Chem. Soc., Chem. Commun., 1983, 1335.
- 850. J. Rana and D. J. Robins, J. Chem. Soc., Chem. Commun., 1984, 81.

- 851. G. Tóth and A. Almásy, Magyar Kémiai Folyóirat, 1983, 89, 555.
- 852. Yuzo Yoshikawa, Yuichi Masuda and Hideo Yamatera, J. Magn. Reson., 1984, 58, 473.
- 853. A. Lyčka and P. Vetešnik, Collect. Czech. Chem. Commun., 1984, 49, 963.
- R. M. Elofson, Natsuko Cyr, J. K. Laidler and K. F. Schulz, Tetrahedron Lett., 1984, 25, 3039.
- 855. A. Lyčka Collect. Czech. Chem. Commun., 1984, 49, 2801.
- 856. R. K. Harris, P. Jonsen and K. J. Packer, Magn. Reson. Chem., 1985, 23, 565.
- 857. R. L. Baxter, C. J. McGregor, G. A. Thomson and A. I. Scott, J. Chem. Soc. Perkin Trans I, 1985, 369.
- 858. R. L. Baxter, E. M. Abbot, S. L. Greenwood and I. J. McFarlane, J. Chem. Soc., Chem. Commun., 1985, 564.
- 859. M. D. Coburn, J. Label. Comp. Radiopharm., 1985, 22, 183.
- 860. E. Fanghänel, R. Radeglia, K. H. Bedemann, H. Mohammed, J. Kriwanek and P. Steinmüller, J. Prakt. Chem., 1985, 327, 627.
- 861. J. Rana and D. J. Robins, J. Chem. Res. (S), 1985, 196.
- V. Macháek, A. Lyčka and M. Nádvornik, Collect. Czech. Chem. Commun., 1985, 50, 2598.
- 863. S. R. Maple and A. Allerhand, J. Am. Chem. Soc., 1987, 109, 56.
- T. Axenrod, X. H. Huang, M. J. Wieder and C. M. Watnick, *Magn. Reson. Chem.*, 1986,
 24, 274.
- 865. Masatsune Kainosho, Hiromasa Nagao and Takashi Tsuji, Biochemistry, 1987, 26, 1068.
- 866. H. A. Kelly and D. J. Robins, J. Chem. Soc. Perkin Trans. I, 1987, 177.
- 867. J. Rana and D. J. Robins, J. Chem. Soc. Perkin Trans. 1, 1986, 1133.
- 868. Adel A. A. Emara and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1987, 1644.
- 869. E. Leete, Sung Hoon Kim and Jatinder Rana, Phytochemistry, 1988, 27, 401.
- 870. P. J. Seaton and S. J. Gould, J. Am. Chem. Soc., 1988, 110, 5912.
- 871. M. J. Taylor, D. J. Calvert and C. M. Hobbis, Magn. Reson. Chem., 1988, 26, 619.
- 872. Yun-Hwa L. Mau and Wei-Yeh Wang, Plant Physiol, 1988, 86, 793.
- 873. W. M. Westler, B. J. Stockman, J. L. Markley, Y. Hosoya, Y. Miyake and M. Kainosho, J. Am. Chem. Soc., 1988, 110, 6256.
- 874. M. S. Solum, J. C. Facelli, Z. Gan and D. M. Grant, Mol. Phys., 1988, 64, 1031.
- 875. E. Leete and Sung Hoon Kim, J. Am. Chem. Soc., 1988, 110, 2976.
- 876. C. G. Moreland, E. O. Stejskal, S. C. J. Sumner, J. D. Memory, F. I. Carroll, G. A. Brine and P. S. Portoghese, J. Magn. Reson., 1989, 83, 173.
- 877. B. Wrackmeyer, Z. Naturforsch., 1988, 43b, 923.
- 878. R. Thiericke, A. Zeeck, J. A. Robinson, J. M. Beale and H. G. Floss, J. Chem. Soc. Chem. Commun., 1989, 402.
- 879. X. Creary and A. F. Sky, J. Am. Chem. Soc., 1990, 112, 368.
- 880. J. Jirman, A. Lyčka and M. Ludwig, Collect. Czech. Chem. Commun., 1990, 55, 136.
- 881. L. Weber, R. Szargan, B. Schulze and M. Mühlstädt, Magn. Reson. Chem., 1990, 28, 419.
- 882. K. L. Brown and B. D. Gupta, Inorg. Chem., 1990, 29, 3854.
- J. Raap, C. M. van der Wielen and J. Lugtenburg, Rect. Trav. Chim. Pays-Bas, 1990, 109, 277.
- 884. K. Kurumaya and M. Kajiwara, Chem. Pharm. Bull., 1990, 38, 2589.
- 885. Whe-Warn Chop, M. Pomerantz and M. K. Witzcak, J. Org. Chem., 1990, 55, 716.
- 886. W. N. Chou and M. Pomerantz, J. Org. Chem., 1991, 56, 2762.
- 887. R. Radeglia, R. Wolf, Th. Steiger, S. Simowa and E. Fanghänel, J. Prakt. Chem., 1984, 326, 511.
- 888. A. R. Butler, C. Glidewell, A. R. Hyde and J. McGinnis, Inorg. Chem., 1985, 24, 2931.
- 889. P. Ruostesuo, A. M. Häkkinen and J. Karjalainen, Spectrochim. Acta, 1986, 42A, 1005.

- 890. Hiroko Suezawa, Tomoaki Yuzuri, Minoru Hirota, Yoshio Ito and Yoshiki Hamada, Bull. Chem. Soc. Jpn, 1990, 63, 328, 891.
- S. Donovan-Mtunzi, R. L. Richards and J. Mason, J. Chem. Soc. Dalton Trans., 1984, 469.
- H. von Bandmann, P. Heymanns, C. Siem and P. Rademacher, Angew. Chem., 1984, 96, 354.
- 893. R. Radeglia, S. Simowa and E. Fanghänel, Z. Chem., 1984, 24, 190.
- S. Donovan-Mtunzi, R. L. Richards and J. Mason, J. Chem. Soc. Dalton Trans, 1984, 2729.
- 895. A. R. Butler, C. Glidewell, A. R. Hyde and J. McGinnis, Polyhedron, 1984, 3, 1165.
- 896. G. A. Olah, R. Herges, K. Laali and G. A. Segal, J. Am. Chem. Soc., 1986, 108, 2054.
- G. G. Furin, O. I. Andreevskaya, A. I. Rezvukhin and G. G. Yakobson, J. Fluorine Chem., 1985, 28, 1.
- 898. A. R. Butler, C. Glidewell and I. L. Johnson, Polyhedron, 1987, 6, 1147.
- Kupče, E. Lukevics, Y. M. Varezhkin, A. N. Mikhailova and V. D. Sheludyakov, Organometallics, 1988, 7, 1649.
- B. L. Haymore, M. Hughes, J. Mason and R. L. Richards, J. Chem. Soc. Dalton Trans, 1988, 2935.
- 901. W. B. Jennings, D. Randall, S. D. Worley and J. H. Hargis, J. Chem. Soc. Perkin Trans. II, 1981, 1411.
- 902. A. John, B. Thomas, A. Pfützner and G. Grossmann, Z. Anorg. Allg. Chem., 1984, 511, 7.
- 903. W. B. Jennings, M. S. Tolley, J. H. Hargis, S. D. Worley and L. Chang, J. Chem. Soc. Perkin Trans. II, 1984, 1207.
- M. Pomerantz, B. T. Ziemnicka, Z. M. Merchant, Whe-Narn Chou, W. B. Perkins and S. Bittner, J. Org. Chem., 1985, 50, 1757.
- B. Thomas, A. John, A. Pfützner, G. Grossmann and E. Herrmann, Z. Anorg. Allg. Chem., 1985, 525, 7.
- 906. M. Pomerantz, Whe-Narn Chou, M. K. Witczak and C. G. Smith, Phosph. Sulph., 1987, 30, 799.
- 907. J. Szewczyk and L. D. Quin, J. Org. Chem., 1987, 52, 1190.
- 908. R. T. Boeré, A. W. Cordes and R. T. Oakley, J. Am. Chem. Soc., 1987, 109, 7781.
- 909. P. F. Kelly and J. D. Woollins, J. Chem. Soc. Dalton Trans., 1988, 1053.
- 910. M. Haddad, J. Barrans, G. Pfister-Guillouxo and J. P. Largox, J. Chem. Res. (M), 1989, 1815
- 911. J. Tomasz, S. Bottka and L. Radics, Nucleos. Nucleot., 1989, 8, 1297.
- W. Domalewski, W. Schilf, L. Stefaniak and G. A. Webb, Magn. Reson. Chem., 1991, 39, 295.
- 913. B. Costisella, J. Schultz, H. Teichmann, C. Donath and M. Meisel, *Phosph. Sulph.*, 1990, 53, 367
- 914. C. W. Allen, P. F. Kelly and J. D. Woolins, J. Chem. Soc., Dalton Trans, 1991, 1343.
- 915. E. Carmona, E. Gutiërrez-Puebla, A. Monge, P. J. Pērez and L. J. Sanchez, *Inorg. Chem.*, 1989, 28, 2120.
- 916. A. H. Klahn and D. Sutton, Organometallics, 1989, 8, 198.
- 917. J. P. Le Ny and J. A. Osborn, Organometallics, 1991, 10, 1546.
- 918. L. Olgemöller and W. Beck, Chem. Ber., 1984, 117, 1241.
- 919. R. Kuroda, I. M. Ismail and P. J. Sadler, J. Inorg. Biochem., 1984, 22, 103.
- 920. T. G. Appleton, J. R. Hall and S. F. Ralph, Austr. J. Chem., 1986, 39, 1347.
- 921. F. Macdonald and P. J. Sadler, Biochemical Mechanisms of Platinum Antitumour Drugs (D. C. H. McBrien and T. F. Slater, eds), p. 361.

- L. S. Hollis, E. W. Stern, A. R. Amundsen, A. V. Miller and S. L. Doran, J. Am. Chem. Soc., 1987, 109, 3596.
- 923. S. Al-Baker and J. C. Dabrowiak, Inorg. Chem., 1987, 26, 613.
- 924. S. Al-Baker, J. F. Vollano and J. C. Dabrowiak, J. Am. Chem. Soc., 1986, 108, 5643.
- 925. T. G. Appleton, J. W. Connor and J. R. Hall, Inorg. Chem., 1988, 27, 130.
- T. G. Appleton, J. R. Hall, T. W. Hambley and P. D. Prenzler, *Inorg. Chem.* 1990, 29, 3562.
- 927. T. G. Appleton, J. W. Connor, J. R. Hall and P. D. Prenzler, Inorg. Chem., 1989, 28, 2030.
- T. G. Appleton, J. R. Hall, T. W. Hambley and P. D. Prenzler, *Inorg. Chem.*, 1990, 29, 3562.
- T. G. Appleton, R. J. Hall, D. W. Neale and C. S. M. Thompson, *Inorg. Chem.*, 1990, 29, 3985.
- 930. E. Kupče, E. Liepinš, A. Lapsina, G. Zelcans and E. Lukevics, J. Organomet. Chem., 1987, 333, 1.
- 931. B. Wrackmeyer and Hong Zhou, Magn. Reson. Chem., 1990, 28, 1066.
- 932. E. Kupče and E. Lukevicš, J. Organomet. Chem., 1988, 358, 67.
- 933. E. Kupče, E. Liepinš and E. Lukevicš, Angew Chem., 1985, 24, 568.
- V. P. Tarasov, V. J. Privalov, G. A. Kirakosyan and Yu. A. Buslaev, Z. Naturforsch., 1983, 38b, 1173.
- 935. C. Stader, B. Wrackmeyer and D. Schlosser, Z. Naturforsch., 1988, 43b, 707.
- 936. E. Kupče and E. Lukevicš, Khim. Geterosikl. Soedin., 1989, 701.
- 937. A. Quassas, J. C. Duplan, B. Fenet and B. Frange, Magn. Reson. Chem., 1990, 28, 693.
- 938. K. Seppelt and H. Oberhammer, Inorg. Chem., 1985, 24, 1227.
- 939. K. C. Molly, K. Quill, S. J. Blunden and R. Hill, J. Chem. Soc. Dalton Trans, 1986, 875.
- 940. J. Holeček, A. Lyčka and R. Wagener, Collect. Czech. Chem. Commun., 1986, 51, 2116.
- 941. C. Stader, B. Wrackmeyer and D. Schlosser, Z. Naturforsch., 1987, 43b, 707.
- 942. A. Lyčka, J. Holecek, B. Schneider and J. Straka, J. Organomet. Chem., 1990, 389, 29.
- 943. C. Stader and B. Wrackmeyer, J. Organomet. Chem., 1987, 321, C1.
- 944. S. J. Blunden, P. A. Cusack and D. G. Gillies, J. Magn. Reson., 1984, 60, 114.
- 945. F. Preuss, W. Towae, V. Kruppa and E. Fuchslocher, Z. Naturforsch., 1984, 39b, 1510.
- 946. G. C. van Stein, G. van Koten, B. de Bok, L. C. Taylor, K. Vreize and C. Brevard, *Inorg. Chim. Acta*, 1984, 89, 29.
- J. Bultitude, L. F. Larkworthy, J. Mason, D. C. Povey and B. Sandell, *Inorg. Chem.*, 1984, 23, 3629.
- 948. M. Minelli, J. L. Hubbard, D. L. Lichtenberger and J. H. Enemark, *Inorg. Chem.*, 1984, 23, 2721.
- A. S. Galiano-Roth, E. M. Michaelides and D. B. Collum, J. Am. Chem. Soc., 1988, 110, 2658.
- F. E. Romesberg, J. H. Gilchrist, A. T. Harrison, D. J. Fuller and D. B. Collum, J. Am. Chem. Soc., 1991, 113, 5751.
- F. De Sarlo, A. Brandi, L. Fabrizi, A. Guarna and N. Niccolai, Org. Magn. Reson., 1984, 22, 372.
- 952. Adel A. A. Emara and G. J. Schrobilgen, J. Chem. Soc., Chem. Commun., 1988, 257.
- 953. R. Kimmich, W. Nusser and F. Winter, Phys. Med. Biol., 1983, 29, 593.
- 954. S. Donovan-Mtunzi, R. L. Richards and J. Mason, J. Chem. Soc. Dalton. Trans., 1984, 2429.
- 955. R. Kimmich, W. Nusser and F. Winter, Phys. Med. Biol., 1983, 29, 593.
- 956. F. Winter and R. Kimmich, Biophys. J., 1985, 48, 331.
- 957. F. Winter, R. Kimmich and W. Nusser, XXII Congr. AMPERE Magn. Rel. Phenom. Proc. 1984, 477.

- 958. S. Koenig, Biophys. J., 1988, 53, 91.
- C. F. Beaulieu, R. D. Brown III, J. I. Clark, M. Spiller and S. H. Koenig, *Magn. Reson. Chem.*, 1989, 10, 362.
- S. H. Koenig, C. F. Beaulieu, R. D. Brown III and M. Spiller, Biophys. J., 1990, 57, 461.
- 961. S. H. Koenig, Biophys. J., 1988, 53, 91.
- 962. J. Tritt-Goc, R. Goc, E. Ponnusamy and D. Fiat, Int. J. Pept. Prot. Res., 1987, 29, 406.
- 963. J. Tritt-Goc, R. Goc and D. Fiat, Ferroelectrics, 1988, 80, 83.
- 964. E. D. Gotsis and D. Fiat, Congr. AMPERE Proc., 1984, 502.
- S. Padmanabhan, B. Richey, C. F. Anderson and M. T. Record Jr, Biochemistry, 1988, 27, 4367.
- 966. B. M. Braun and M. Holz, Z. Phys. Chem. Neue Folge, 1983, 135, 77.
- 967. B. M. Braun and M. Holz, J. Soln. Chem., 1983, 12, 685.
- 968. M. Holz and A. Sacco, Z. Phys. Chem., 1987, 153, 129.
- 969. H. Kovacs, J. Kowalewski, A. Maliniak and P. Stilbs, J. Phys. Chem., 1989, 93, 962.
- 970. Tadashi Tokuhiro, J. Chem. Soc. Faraday Trans. II, 1988, 84, 1793.
- 971. L. Plomp, A. C. Loman and J. Bulthuis, J. Chem. Phys., 1986, 84, 6591.
- Huang Yi-Ning, Li Zhi-Fen, Liu Rui-Lin and Yuan Han-Zhen, Acta Chim. Sin., 1989, 47, 491.
- 973. B. Ancian and B. Tiffon, J. Chem. Soc. Faraday Trans. II, 1984, 80, 1067.
- 974. V. F. Galat and E. V. Titov, J. Mol. Struct., 1988, 174, 303.
- 975. R. J. Trepanier and M. A. Whitehead, J. Mol. Struct., 1983, 111, 415.
- 976. H. M. Ratajczak and J. A. Ladd, J. Mol. Lig., 1984, 29, 97.
- 977. T. Eriksen and E. J. Pedersen, Mol. Phys., 1984, 53, 1411.
- 978. Seiko Ito and Yoshiko Yano, Bull. Chem. Soc. Jpn, 1984, 57, 2824.
- 979. Taro Eguchi and Michihiko Kishita, J. Phys. Soc. Jpn, 1984, 53, 3640.
- O. Söderman, H. Walderhaug, U. Henriksson and P. Stilbs, J. Phys. Chem., 1985, 89, 3963.
- 981. Y. Uzu, J. Nakagawa and M. Yokoi, Bull. Chem. Soc. Jpn, 1986, 59, 2891.
- A. Belmajdoub, J. Brondeau, J. C. Boubel and D. Canet, Chem. Phys. Lett., 1987, 140, 389.
- 983. O. Söderman, G. Carlström, M. Monduzzi and U. Olsson, LANGMUIR, 1988, 4, 1039.
- A. Belamajdoub, K. ElBayed, J. Brondeau, D. Canet, I. Rico and A. Lattes, J. Phys. Chem., 1988, 92, 3569.
- 985. A. Belmajdoub, J. C. Boubel and D. Canet, J. Phys. Chem., 1989, 93, 4844.
- Tuck, C. Wong, K. Ikeda, K. Meguro, O. Söderman, U. Olsson and B. Lindman, J. Phys. Chem., 1989, 93, 4861.
- 987. J. D. Halliday, P. E. Bindner and Shahsultan Padamshi, Can. J. Chem., 1985, 63, 2975.
- B. Dietrich, J. P. Kintzinger, J. M. Lehn, B. Metz and A. Zahidi, J. Phys. Chem., 1987, 91, 6600.
- 989. Keiko Koga and Yoko Kanazawa, Chem. Phys. Lipids, 1984, 36, 153.
- Keiko Koga, Yoshitsugu Tanaka and Yoko Kanazawa, Chem. Phys. Lipids, 1985, 36, 285.
- 991. Yoko Kanazawa, Keiko Koga and Isao Nishizono, J. Magn. Reson., 1985, 62, 518.
- D. D. McIntyre, A. W. Apblett, P. Lundberg, K. J. Schmidt and H. J. Vogel, J. Magn. Reson., 1989, 83, 377.
- 993. N. S. Golubev, N. D. Orlova and R. Khamitov, Opt. Spektrosc., 1987, 62, 1005.
- 994. R. E. Wasylishen and A. M. de P. Nicholas, Magn. Reson. Chem., 1986, 24, 1031.
- 995. C. Chang, F. Fish, D. D. Muccio and T. St. Pierre, Macromolecules, 1987, 20, 621.
- 996. A. Martin de P. Nicholas and R. E. Wasylishen, J. Phys. Chem., 1985, 89, 5446.

- 997. A. Martin de P. Nicholas and R. E. Wasylishen, Can. J. Chem., 1987, 65, 951.
- 998. R. E. Wasylishen, Can. J. Chem., 1986, 64, 773.
- 999. J. Dolinsek and R. Blinc, J. Phys. C: Solid State Phys., 1988, 21, 705.
- 1000. A. C. Olivieri, J. Chem. Soc. Perkin Trans. II, 1990, 85.
- 1001. S. D. Kennedy and R. G. Bryant, J. Magn. Reson., 1989, 83, 565.
- 1002. J. B. Lambert and D. Stec, Org. Magn. Reson., 1984, 22, 301.
- 1003. N. Benetis, J. Kowalewski, L. Nordenskiöld and U. Edlund, J. Magn. Reson., 1984, 58, 282.
- 1004. S. Khazaeli and R. E. Viola, J. Inorg. Biochem., 1984, 22, 33.
- 1005. H. R. Kricheldorf and W. E. Hull, Int. J. Biol. Macromol., 1984, 6, 81.
- 1006. D. G. Powell and L. J. Mathias, J. Am. Chem. Soc., 1990, 112, 669.
- 1007. D. W. Urry, T. L. Trapane, R. B. McMichens, M. Jqbal, R. Dean Harris and K. U. Prasad, Biopolymers, 1986, 25, S209.
- 1008. Byung-Ha Oh and J. L. Markley, Biochemistry, 1990, 29, 4012.
- 1009. J. Jarvet, A. Olivson, U. Mets, M. Pooga, R. Aguraiuja and E. Lippmaa, Eur. J. Biochem., 1989, 186, 287.
- 1010. V. P. Chacko and R. G. Bryant, J. Magn. Reson., 1984, 57, 79.
- 1011. C. J. Jameson, A. K. Jameson and N. C. Smith, J. Chem. Phys., 1987, 86, 6833.
- 1012. S. Donovan-Mtunzi, C. J. MacDonald, R. L. Richards, G. E. Hawkes and J. Mason, J. Chem. Soc. Dalton Trans., 1985, 2473.
- 1013. C. L. Perrin and R. K. Gipe, J. Am. Chem. Soc., 1986, 108, 1088.
- 1014. C. L. Perrin and R. K. Gipe, Science, 1987, 238, 1393.
- 1015. A. M. C. Harnden, B. K. Hunter and R. J. C. Brown, J. Magn. Reson., 1990, 88, 334.
- 1016. N. Jurani, XXII Congr. AMPERE Magn. Rel. Phenom Proc., 1984, 365.
- 1017. G. S. Lukat and H. M. Goff, J. Biol. Chem., 1986, 261, 16528.
- 1018. S. Modi, D. V. Behere and S. Mitra, Indian J. Chem., 1990, 29A, 301.
- 1019. S. Modi, A. K. Saxena, D. V. Behere and S. Mitra, Biochim. Biophys. Acta, 1990, 1038, 164.
- 1020. A. R. Katritzky, T. I. Yousaf, Ban Chi Chen and Zeng Guang-Zhi, Tetrahedron, 1986, 42, 623.
- 1021. F. H. Köhler, N. Hertkorn and J. Blümel, Chem. Ber., 1987, 120, 2081.
- 1022. G. Anderegg, K. Popov and P. S. Pregosin, Helv. Chim. Acta, 1986, 69, 329.
- 1023. C. Chang, D. D. Muccio, T. St. Pierre, C. C. Chen and C. G. Overberger, Macromolecules, 1986, 19, 913.
- 1024. B. Wrackmeyer, C. Stader and Hong Zhou, Spectrochim. Acta, 1989, 45A, 1101.
- 1025. E. W. Della, B. Kasum and K. P. Kirkbride, J. Am. Chem. Soc., 1987, 109, 2746.
- 1026. E. Haslinger, M. Reithmaier, W. Robien and P. Wolschann, Monats. Chem., 1984, 115, 375.
- 1027. P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declerq and M. M. Woolfson, J. Chem. Res. (H), 1987, 1946.
- 1028. J. P. Picavet and H. Sliwa, J. Chem. Res. (S), 1987, 230.
- 1029. D. Barbry, B. Hasiak and D. Couturier, Magn. Reson. Chem., 1990, 28, 560.
- 1030. L. D. Quin, K. C. Caster, B. G. Marsi and J. A. Miller, J. Org. Chem., 1986, 51, 3724.
- 1031. J. W. Davies and J. R. Malpass, Tetrahedron Lett., 1985, 26, 4537.
- 1032. E. E. Liepins, P. T. Trapencer and I. Ya. Kalvinsh, Khim. Geterosikl. Soedin., 1988, 1336.
- 1033. H. Hilpert, L. Hoesch and A. S. Dreiding, Helv. Chim. Acta, 1987, 70, 381.
- 1034. J. H. Nelson, N. E. Takach, R. A. Henry, D. W. Moore, W. M. Tolles and G. A. Gray, Magn. Reson. Chem., 1986, 24, 984.
- 1035. L. N. Kojkow, P. B. Terentev, I. P. Glorizov, W. N. Torocheschnikov and I. G. Bunbel, Zh. Org. Khim., 1984, 20, 1621.

- 1036. H. Fritz, Bull. Soc. Chim. Belg., 1984, 93, 559.
- 1037. A. R. Katritzky, D. L. Ostercamp and T. I. Yousaf, Tetrahedron, 1986, 42, 5729.
- 1038. H. Duddeck and M. Kaiser, Spectrochim. Acta, 1985, 41, 913.
- 1039. B. S. Iyengar, T. Takahashi, W. A. Remers and W. T. Bradner, J. Med. Chem., 1986, 29, 144.
- 1040. L. M. Jackmann, L. M. Scarmoutzos, B. D. Smith and P. G. Williard, J. Am. Chem. Soc., 1988, 110, 6058.
- 1041. A. V. Afonin, V. K. Voronkov and M. A. Andriyankov, Zh. Obshch. Khim., 1986, 56, 2806.
- 1042. I. Ya. Mainagashev, V. V. Lapachev, M. A. Fedotov and V. P. Fedotov, Khim. Geterosikl. Soedin., 1987, 1663.
- 1043. R. Csuk, N. Müller and H. Sterk, Z. Naturforsch. 1985, 40b, 987.
- 1044. Zhu Jin-Chang, Sun Xian-Yu, Wu Hua-Ju, Jiang Li-Jin, Chen Bang-Quin and Wu Guan-Li, Acta Chim. Sin., 1985, 43, 1151.
- 1045. H. Nöth and H. Prigge, Chem. Ber., 1986, 119, 338.
- 1046. C. Habben, A. Meller, M. Noltemeyer and G. M. Sheldrick, J. Organomet. Chem., 1985, 288, 1.
- 1047. A. Meller, W. Maringgele, G. Elter, D. Bromm, M. Noltemeyer and G. M. Sheldrick, Chem. Ber., 1987, 120, 1437.
- 1048. C. Habben, A. Meller, M. Noltemeyer and G. M. Sheldrick, Z. Naturforsch., 1986, 41b, 1093
- 1049. A. Meller, D. Bromm, W. Maringgele, D. Böhler and G. Elter, J. Organomet. Chem., 1988, 347, 1..
- 1050. C. D. Habben, Chem. Ber., 1988, 121, 1967.
- 1051. G. Klebe, K. Hensen and J. von Jouane, J. Organomet. Chem., 1983, 258, 137.
- 1052. C. Paulmier, P. Lerouge, F. Outurquin, S. Chapelle and P. Granger, Magn. Reson. Chem., 1987, 25, 955.
- 1053. J. S. DePue and D. B. Collum, J. Am. Chem. Soc., 1988, 110, 5518.
- 1054. Chisako Yamagami, Narao Takao and Yoshito Takeuchi, Austr. J. Chem., 1988, 41, 1.
- 1055. T. Yokoyama, I. Hanazome, M. Mishima, M. J. Kamlet and R. W. Taft, J. Org. Chem., 1987, 52, 163.
- 1056. Chisako Yamagami, Narao Takao and Yoshito Takeuchi, Austr. J. Chem., 1989, 42, 463.
- 1057. D. W. Duff and G. E. Maciel, Macromolecules, 1990, 23, 3069.
- 1058. A. Garrone, R. Fruttero, C. Tironi and A. Gasco, J. Chem. Soc. Perkin Trans. II, 1989.
- 1059. Yu Jun and Ye Ting-Gao, Acta Chim. Sin., 1987, 1023.
- 1060. A. M. Orendt, J. Michl and J. Reiter, Magn. Reson. Chem., 1989, 27, 1.
- 1061. P. Goya, A. Herrero, M. L. Jimeno, C. Ochoa, J. A. Páez, F. H. Cano, C. Foces-Foces and M. M. Ripoll, *Heterocycles*, 1988, 27, 2201.
- 1062. V. Machaček, V. Štěrba, J. Kolb and A. Lyčka, Collect. Czech. Chem. Commun., 1988, 53, 1044.
- 1063. B. J. Clark and R. Grayshan, J. Chem. Res. (S), 1984, 62.
- 1064. B. J. Clark and R. Grayshan, J. Chem. Res. (S), 1984, 64.
- 1065. K. Laali, J. Szele and H. Zollinger, Helv. Chim. Acta, 1983, 66, 1737.
- 1066. J. R. Ebdon, P. E. Heaton, T. N. Huckerby, W. T. S. O'Rourke and J. Parkin, *Polymer*, 1984, 25, 821.
- 1067. Yu Jun and Guo Zungru, Chinese J. Magn. Reson., 1989, 6, 65.
- 1068. D. R. Doerge, N. M. Cooray, A. B. K. Yee and W. P. Niemczura, J. Label. Comp. Radiopharm., 1990, 28, 739.
- 1069. I. Wawer, Magn. Reson. Chem., 1989, 27, 1031.

- 1070. H. Köhler, V. I. Nefedov, G. Birkner, M. Jeschke and A. Kolbe, Z. Anorg. Allg. Chem., 1986, 542, 59.
- 1071. N. N. Gerasimchuk, W. W. Skopenko and S. I. Tyukhtenko, Ukr. Chim. J., 1985, 51, 232.
- 1072. M. S. Samples and C. H. Yoder, J. Organomet. Chem., 1987, 332, 69.
- 1073. Rao Lingfen, Chen Yixuan and Li Wenzhao, Acta Physico-Chim. Sin., 1987, 3, 632.
- 1074. J. P. Gouesnard, Bull. Soc. Chim. Fr., 1988, 132.
- 1075. D. G. Powell, A. M. Sikes and L. J. Mathias, Polym. Preparations, 1988, 29, 86.
- 1076. P. Ruostesuo, A. M. Häkkinen and K. Peltola, Spectrochim. Acta, 1985, 41A, 739.
- 1077. J. H. Glans and G. R. Hatfield, J. Label. Comp. Radiopharm., 1989, 27, 1341.
- 1078. Hiroko Suezawa, Kin-Ya Tsuchiya, Eiji Tahara and Minoru Hirota, Bull. Chem. Soc. Jpn, 1988, 61, 4057.
- 1079. J. de Abajo and H. R. Kricheldorf, J. Macromol. Sci. Chem., 1984, A21, 411.
- 1080. E. J. Schier, W. Sacher and W. Beck, Z. Naturforsch., 1987, 42b, 1424.
- 1081. R. S. Balestrero, D. M. Forkey and J. G. Russell, Magn. Reson. Chem., 1986, 24, 651.
- 1082. A. M. Häkkinen and P. Ruostesuo, Magn. Reson. Chem., 1985, 23, 424.
- 1083. A. M. Häkkinen, P. Ruostesuo and S. Kurkisuo, Magn. Reson. Chem., 1985, 23, 311.
- 1084. P. Rudostesuo, A. M. Häkkinen, R. Liias-Lepistö and U. Salminen, Spectrochim. Acta, 1988, 44A, 1105.
- 1085. M. I. M. Wazeer and Sk. Asrof Ali, Magn. Reson. Chem., 1990, 28, 601.
- 1086. G. Y. Kuo, B.Y-H. Hwang and D. B. Staiger, Biochem. Pharmacol., 1986, 35, 1613.
- 1087. A. C. Kuesel, W. Kuhn, J. Sianoudis, L. H. Grimme, D. Leibfritz and A. Mayer, Arch. Microbiol., 1989, 151, 434.
- 1088. W. W. Bachovchin, Biochemistry, 1986, 25, 7751.
- 1089. W. W. Bachovchin, W. Y. L. Wong and S. Farr-Jones, Bull. Magn. Reson., 1986, 8, 189.
- 1090. W. W. Bachovchin, W. Y. L. Wong, S. Farr-Jones, A. B. Shenvi and C. A. Kettner, Biochemistry, 1988, 27, 7689.
- 1091. E. K. Jaffe, G. D. Markham and J. S. Rajagopalan, Biochemistry, 1990, 29, 8345.
- 1092. J. Glushka, M. Lee, S. Coffin and D. Cowburn, J. Am. Chem. Soc., 1990, 112, 2843.
- 1093. P. R. Gooley, M. S. Caffrey, M. A. Cusanovich and N. E. MacKenzie, Biochemistry, 1990, 29, 2278.
- 1094. P. Leighton and Ponzy Lu, Biochemistry, 1987, 26, 7262.
- 1095. H. Knoblauch, H. Rüterjans, W. Bloemhoff and K. E. T. Kerling, Eur. J. Biochem., 1988, 172, 485.
- 1096. I. P. Gerothanassis, T. Karayannis, M. Sakarellos-Daitsiotis, K. Sakarellos and M. Marraud, J. Magn. Reson., 1987, 75, 513.
- 1097. Akira Shoji, Takuo Ozaki, Teruaki Fujito, Kenzo Deguchi, Shinji Ando and Isao Ando, Macromolecules, 1989, 22, 2860.
- 1098. M. Giffard, J. Cousseau and G. J. Martin, J. Chem. Soc. Perkin Trans. II, 1985, 157.
- 1099. E. Kupčhe, L. Ignatovitch and E. Lukevicš, Latv. PSR Zinat. Akad. Vestis., Khim. Ser., 1988, 5, 625.
- 1100. A. V. Mischenko, V. E. Fedotov, B. A. Kolesov and M. A. Fedotov, *Koord. Khim.*, 1989, 15, 200.
- 1101. T. Yamaguchi, K. Yamamoto and H. Ohtaki, Bull. Chem. Soc. Jpn, 1985, 58, 3235.
- 1102. J. B. Lambert, J. A. McConnell and W. J. Schulz Jr, J. Am. Chem. Soc., 1986, 108, 2482.
- 1103. Von. V. Bosáček, D. Freude, W. Gründer, W. Meiler and H. Pfeifer, Z. Phys. Chem., 1984, 265, 241.
- 1104. E. T. K. Haupt and D. Leibfritz, Spectrochim. Acta, 1989, 45A, 119.
- 1105. J. Blixt, B. Györi and J. Glaser, J. Am. Chem. Soc., 1989, 111, 7784.
- 1106. Kiyoshi Matsumoto, Takane Uchida, Yukio Ikemi, Hideo Fujita, Kinuyo Aoyama and Momoyo Asahi, Heterocycles, 1986, 24, 339.

- 1107. K. Matsumoto, T. Uchida, K. Aoyama and M. Asahi, Chem. Express, 1986, 1, 423.
- 1108. M. Minelli and W. J. Maley, Inorg. Chem., 1989, 28, 2954.
- 1109. Toshiaki Taura, Inorganica Chim. Acta, 1989, 163, 131.
- 1110. D. V. Behere, E. Gonzalez-Vergara and H. M. Goff, Biochim. Biophys. Acta, 1985, 832, 319.
- 1111. G. S. Lukat, K. R. Rodgers, M. N. Jabro and H. M. Goff, Biochemistry, 1989, 28, 3338.
- 1112. D. V. Behere, D. C. Ales and H. M. Goff, Biochim. Biophys. Acta, 1986, 871, 285.
- 1113. Yushitsugu Shiro, Tetsutaro Iizuka, Ryu Makino, Yuzuru Ishimura and Isao Morishima, J. Am. Chem. Soc., 1989, 111, 7707.
- 1114. H. McNab, J. Chem. Soc. Perkin Trans. I, 1987, 657.
- 1115. P. Dobrowolski, B. Kamieński, J. Sitkowski, L. Stefaniak and Yu Chun, Bull. Pol. Acad. Sci.: Chem., 1988, 36, 203.
- 1116. B. Kamieński, W. Schilf, L. Stefaniak and G. A. Webb, Bull. Pol. Sci. Chem., 1989, 37, 323.
- 1117. H. P. Köst, E. Benedikt, E. Cmiel and S. Schneider, Z. Naturforsch., 1983, 38c, 943.
- 1118. N. Müller, XXII Congr. AMPERE Magn. Reson. Rel. Phenom. Pres., 1984, 337.
- 1119. H. Falk, N. Müller and S. Wansch, Monats. Chem., 1985, 116, 1087.
- 1120. H. Falk and H. Flödl, Monats. Chem., 1985, 116, 1177.
- 1121. B. Wrackmeyer, J. Organomet. Chem., 1985, 297, 265.
- 1122. N. N. Becker and J. D. Roberts, Biochemistry, 1984, 23, 3336.
- 1123. W. Schilf, L. Stefaniak and G. A. Webb, Magn. Reson. Chem., 1987, 25, 721.
- 1124. F. Compernolle and S. Toppet, J. Heterocycl. Chem., 1986, 23, 541.
- 1125. Yasuhiko Yamamoto, Norishige Nanai, Yoshio Inoue and Riichiro Chujo, J. Chem. Soc., Chem. Commun., 1989, 1419.
- 1126. E. Bojarska-Olejnik, L. Stefaniak, M. Witanowski and G. A. Webb, Bull. Pol. Acad. Sci.: Chem., 1987, 35, 86.
- 1127. S. Nagarajan, S. R. Wilson and K. L. Rinehart Jr., J. Org. Chem., 1985, 50, 2174.
- 1128. S. Tono-Oka, Chem. Lett., 1987, 2233.
- 1129. J. Jażwiński, W. Kożmiński, L. Stefaniak and G. A. Webb, J. Mol. Struct., 1991, 243, 365.
- 1130. G. L'abbé, M. Gelinne and S. Toppet, J. Heterocycl. Chem., 1989, 26, 729.
- 1131. P. G. Tsoungas and B. F. De Costa, Magn. Reson. Chem., 1988, 26, 8.
- 1132. B. Kamieński, W. Schilf, J. Sitkowski, L. Stefaniak and G. A. Webb, J. Crystallogr. Spectrosc. Res., 1989, 19, 1003.
- 1133. J. Jażwiński, L. Stefaniak and G. A. Webb, Magn. Reson. Chem., 1988, 26, 1012.
- 1134. J. Jażwiński and L. Stefaniak, Bull. Pol. Acad. Sci.: Chem., 1991, 39, 265.
- 1135. D. B. Adams, M. Hooper, A. G. Morpeth, E. S. Raper, W. Clegg and B. Stoddart, J. Chem. Soc. Perkin Trans. 2, 1990, 1269.
- 1136. J. Jażwiński, L. Stefaniak, M. Witanowski and G. A. Webb, Bull. Pol. Acad. Sci.: Chem., 1989, 37, 313.
- 1137. J. C. Lindon, J. M. Williams and P. Barraclough, Magn. Reson. Chem., 1986, 24, 55.
- 1138. D. Freude, H. Pfeifer, H. Schmidt and B. Staudte, Z. Phys. Chem., 1984, 265, 250.
- 1139. Z. Dega-Szafran, M. Szafran, L. Stefaniak, C. Brevard and M. Bourdonneau, Magn. Reson. Chem., 1986, 24, 424.
- 1140. R. M. Claramunt, J. Elguero, R. Faure and E. Elguero, J. de Chim. Phys., 1984, 81, 413.
- 1141. Yu. A. Strelenko, O. A. Rakitin, V. A. Ogurtsov, T. I. Godovikova and L. I. Khmel'nitskii, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 2848.
- 1142. G. Toth, A. Szllsy, C. Szantay, A. Almasy, I. Hermecz, A. Horvath, L. Vasvari-Debreczy and Z. Meszaros, *Magy. Kem. Foly*, 1988, **94**, 132.
- 1143. M. V. Jovanovic, Spectrochim. Acta, 1984, 40A, 637.

- 1144. J. Schripsema, R. Verpoorte, A. B. Svendsen and C. Erkelens, Spectrosc. Lett., 1987, 20, 777.
- 1145. A. Lyčka, J. Holeček, M. Nádvornik and K. Handliř, J. Organomet. Chem., 1985, 280, 323.
- 1146. J. Jirman, A. Lyčka, J. Holeček, K. Hadliř, M. Nádvornik and S. T. M. Teleb, Sb. Věd. Praci. Vys. Škola Chem. Technol. Pardubice, 1987, 50, 57.
- 1147. H. McNab and G. S. Smith, J. Chem. Soc. Perkin Trans. I, 1984, 381.
- 1148. B. J. Clark, R. Grayshan and K. J. McCullough, J. Chem. Res. (S), 1985, 50.
- 1149. L. Kaczmarek, L. Stefaniak and G. A. Webb, J. Crystallogr. Spectrosc. Res., 1987, 17, 411.
- 1150. A. F. Janzen, T. Q. Nguyen, Fangi Qu and K. Marat, J. Chem. Soc., Chem. Commun., 1988, 1274.
- 1151. G. Klebe, K. Hensen and J. von Jouanne, J. Organomet. Chem., 1983, 258, 137.
- 1152. P. Goya, C. Ochoa, I. Rozas, A. Alemany and M. Luisa Jimeno, *Magn. Reson. Chem.*, 1986, 24, 444.
- 1153. J. Elguero, M. J. Jimeno, R. Nieves, C. Ochoa and A. Alemany, J. Chem. Soc. Perkin Trans. II, 1988, 859.
- 1154. W. D. Beinert, H. Rüterjans and F. Müller, Flavins and Flavoproteins Proc. Int. Symp., 1984, 211.
- 1155. W. D. Beinert, H. Rüterjans, F. Müller and A. Bacher, Eur. J. Biochem., 1985, 152, 581.
- 1156. J. Vervoort, F. Muller, D. J. O'Kane, J. Lee and A. Bacher, Biochemistry, 1986, 25, 8067.
- 1157. S. Pust, J. Vervoot, K. Decker, A. Bacher and F. Müller, Biochemistry, 1989, 28, 516.
- 1158. J. Vervoort, D. J. O'Kane, F. Müller, A. Bacher, G. Strobl and J. Lee, *Biochemistry*, 1990, 29, 1823.
- 1159. F. Seela, H. Rosemeyer, A. Biesewig and T. Jurgens, Nucleos. Nucleot., 1988, 7, 581.
- 1160. G. Remaud, C. J. Welch, X-X. Zhou and J. Chattopadhyaya, Nucleos. Nucleot., 1988, 7, 167.
- 1161. G. Remaud, X-X. Zhou, J. Chattopadhyaya, M. Oivanen and H. Lönnberg, Tetrahedron, 1987, 43, 4453.
- 1162. P. B. Cho, F. F. Kadlubar, S. J. Culp and F. E. Evans, Chem. Res. Toxicol., 1990, 3, 445.
- 1163. G. Barbarella, A. Bertoluzza and V. Tugnoli, Magn. Reson. Chem., 1987, 25, 864.
- 1164. G. Barbarella, A. Bertoluzza and V. Tugnoli, Nucleic Acids Res., 1988, 16, 7202.
- 1165. G. W. Buchanan and M. J. Bell, Magn. Reson. Chem., 1986, 24, 493.
- 1166. G. Barbarella, A. Bertoluzza, M. A. Morelli, M. R. Tosi and V. Tugnoli, Gazz. Chim. Ital., 1988, 118, 637.
- 1167. R. H. Griffey, D. Davis, Z. Yamaizumi, S. Nishimura, Ad Bax, B. Hawkins and C. D. Poulter, J. Biol. Chem., 1985, 260, 9734.
- 1168. L. Kozerski, H. Sierzputowska-Gracz, W. Krzyźosiak, M. Bartek-Wiewiórowska, M. Jaskólski and M. Wiewiórowski, Nucleic Acids Res., 1984, 12, 2205.
- 1169. U. Hahn, R. Desai-Hahn and H. Rüterjans, Eur. J. Biochem., 1985, 146, 705.
- 1170. G. Barbarella, M. L. Copabianco, A. Carcuro, F. P. Colonna, A. Garbesi and V. Tugnoli, Can. J. Chem., 1988, 66, 2492.
- 1171. G. Remaud, J. Kjellberg, N. G. Johansson and J. Chattopadhyaya, *Tetrahedron*, 1987, 43, 365.
- 1172. D. R. Davis, R. H. Griffey, Z. Yamaizumi, S. Nishimura and C. D. Poulter, J. Biol. Chem., 1986, 261, 3584.
- 1173. M. Pomerantz, Whe-Narn Chou, M. K. Witczak and C. S. Smith, J. Org. Chem., 1987, 52, 159.
- 1174. Von B. Thomas, G. Grossman, W. Bieger and A. Porzel, Z. Anorg. Allg. Chem., 1983, 504, 138.

- 1175. G. S. Harbison, S. O. Smith, J. E. Roberts, J. A. Pardoen, P. P. J. Mulder, C. Winkel, J. M. L. Courtin, R. A. Mathies, J. Lugtenburg, J. Herzfeld and R. G. Griffin, MNR in Biology and Medicine, 1986, 33.
- 1176. J. P. Gouesnard and J. Dorie, Bull. Soc. Chim. France, 1985, II, 132.
- 1177. P. S. Belton and J. D. Woollins, Magn. Reson. Chem., 1986, 24, 1080.
- 1178. A. W. Zibarev, G. G. Furin, I. K. Korobeinicheva, M. A. Fedotov and G. G. Jacobson, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1983, 2259.
- 1179. W. Sicińska, L. Stefaniak, M. Witanowski and G. A. Webb, J. Mol. Spectrosc., 1987, 158, 57.
- 1180. K. T. Bestari, R. T. Boeré and R. T. Oakley, J. Am. Chem. Soc., 1989, 111, 1579.
- 1181. J. Passmore and M. J. Schriver, Inorg. Chem., 1988, 27, 2749.
- 1182. A. Apblett and T. Chivers, Inorg. Chem., 1989, 28, 4544.
- 1183. A. Haas and M. Rieland, Chimia, 1988, 42, 67.
- 1184. M. D. Coburn, C. B. Storm, D. W. Moore and T. G. Archibald, *Magn. Reson. Chem.*, 1990, 28, 16.
- 1185. M. D. Coburn, C. B. Storm, D. W, Moore and T. G. Archibald, Magn. Reson. Chem., 1990, 28, 16.
- 1186. A. Lyčka, V. Machaček and J. Jiřman, Collect. Czech. Chem. Commun., 1987, 52, 2946.
- 1187. G. A. Olah, G. K. Surya-Prakash, Massoud Arvanaghi, V. V. Krishnamurthy and Subhash C. Narang, J. Am. Chem. Soc., 1984, 106, 2378.
- 1188. M. R. Amin, L. Dekker, D. B. Hibbert, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc., Chem. Commun., 1986, 658.
- 1189. T. Axenrod, B. Liang and S. Bulusu, Magn. Reson. Chem., 1989, 27, 925.
- 1190. V. A. Lagutenkov, D. I. Skorovarov, V. S. Ulyanov, A. A. Vashman and I. S. Pronin, Zh. Fiz. Khim., 1986, 60, 1299.
- 1191. A. E. Lemire, A. F. Janzen and K. Marat, Inorg. Chim. Acta, 1985, 110, 237.
- 1192. A. E. Lemire, A. F. Janzen and K. Marat, Inorg. Chim. Acta, 1986, 114, 211.
- 1193. I. S. Pronin and A. A. Washman, Zh. Neorg. Khim., 1987, 32, 728.
- 1194. A. Fratiello, V. Kubo-Anderson, S. Azimi, T. Flores, E. Marinez, D. Matejka, R. Perrigan and M. Vigil, J. Soln Chem., 1990, 19, 811.
- 1195. M. I. Khalil, Inorg. Chem., 1990, 29, 5131.
- 1196. L. M. Anderson, A. R. Butler and A. S. McIntosch, J. Chem. Soc. Perkin Trans. II, 1987, 1239.
- 1197. H. Hilpert, L. Hoesch and A. S. Dreiding, Helv. Chim. Acta, 1985, 68, 325.
- 1198. M. Sawada, Y. Takai, T. Tanaka, T. Hanafusa, M. Okubo and Y. Tsuno, Bull. Chem. Soc. Jpn, 1990, 63, 702.
- 1199. R. J. Buist, S. C. F. Au-Yeung and D. R. Eaton, Can. J. Chem., 1985, 63, 3558.
- 1200. Y. Odaka, A. Yamasaki and M. Watabe, Bull. Chem. Soc. Jpn, 1985, 58, 3407.
- 1201. A. W. Belyaev, A. B. Benediktov, M. A. Fedotov and S. C. Khranenko, *Koord. Chim.*, 1986, 12, 690.
- 1202. M. M. Gerasimchuk, W. W. Skopenko and S. I. Tiuchtenko, Dokl. Akad. Ukr. PCP, Ser. B: Geol. Chim., 1984, 33.
- 1203. V. V. Skopenko, N. N. Gerasimchuk, S. I. Tjuchtenko and H. Köhler, Z. Anorg. Allg. Chem., 1986, 542, 65.
- 1204. O. A. Domaschevskaya, W. D. Khavruchenko and N. N. Gerashimchuk, Ukr. Chim. Zh., 1988, 54, 235.
- 1205. J. D. Roberts, L. Stefaniak, G. A. Webb and M. Witanowski, Bull. Pol. Acad. Sci.: Chem., 1986, 34, 81.
- 1206. R. Kupper, B. D. Hilton, M. B. Kroeger-Koepke, S. R. Koepke and C. J. Michejda, J. Org. Chem., 1984, 49, 3781.

- R. L. Willer, C. K. Lowe-Ma, D. W. Moore and LeRoy F. Johnson, J. Org. Chem., 1984,
 49, 1481.
- 1208. J. Dorie, J. P. Gouesnard, B. Mechin and P. Mellet, J. Mol. Struct., 1986, 144, 185.
- 1209. S. Affolter and P. S. Pregosin, J. Organomet. Chem., 1990, 398, 197.
- V. M. Mastikhin, I. L. Mudrakovsky and S. V. Filimonova, Chem. Phys. Lett., 1988, 149, 175.
- 1211. V. M. Mastikhin, I. L. Mudrakovsky and S. V. Filimonova, Zeolites, 1990, 10, 593.
- 1212. G. I. Bordokin, I. R. Elanov, M. M. Shakirov and V. G. Shubin, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 206.
- 1213. M. Witanowski, W. Sicińska and G. A. Webb, Spectrosc. Int. J., 1991, 9, 55.
- 1214. S. N. Anderson, R. L. Richards and D. L. Hughes, J. Chem. Soc. Dalton Trans., 1986, 245.
- 1215. N. J. Lazarowych, R. H. Morris and J. M. Ressner, Inorg. Chem., 1986, 25, 3926.
- 1216. R. E. Norman and P. J. Sadler, Inorg. Chem., 1988, 27, 3583.
- 1217. T. G. Appleton, J. R. Hall, S. F. Ralph and C. S. M. Thompson, Austr. J. Chem., 1988, 41, 1425.
- 1218. R. Bramley, M. Brorson, A. M. Sargeson and C. E. Schaffer, Inorg. Chem., 1987, 26, 314.
- 1219. Yoshiaki Nakashima, Masayuki Muto, Keiichi Kawano, Yoshimasa Kyogoku and Yuzo Yoshikawa, Bull. Chem. Soc. Jpn, 1989, 62, 2455.
- 1220. C. G. Young, M. Minelli, J. H. Enemark, W. Hussain, C. J. Jones and J. A. McCleverty, J. Chem. Soc. Dalton Trans., 1987, 619.
- 1221. P. D. Duffin, L. F. Larkworthy, J. Mason, A. N. Stephens and R. M. Thompson, *Inorg. Chem.*, 1987, 26, 2034.
- 1222. C. Glidewell and I. L. Johnson, Chim. Scripta, 1987, 27, 441.
- 1223. D. E. Fjare and W. L. Gladfelter, J. Am. Chem. Soc., 1984, 106, 4799.
- 1224. M. Minelli, C. G. Young and J. H. Enemark, Inorg. Chem., 1985, 24, 1111.
- 1225. D. Sellmann, J. Keller, M. Moll, C. Campana and M. Haase, *Inorg. Chim. Acta*, 1988, 141, 243.
- 1226. R. E. Stevens, D. E. Fjare and W. L. Gladfelter, J. Organomet. Chem., 1988, 347, 373.
- 1227. D. R. Mantell and W. L. Gladfelter, J. Organomet. Chem., 1988, 347, 333.
- 1228. T. Godemeyer, K. Dehnicke and E. Fluck, Z. Anorg. Allg. Chem., 1988, 565, 41.
- 1229. T. J. DiFeo, R. A. Schiksnis, R. K. Kohli, S. J. Opella and A. Nath, *Magn. Reson. Chem.*, 1989, 27, 127.
- 1230. K. Kurumaya, T. Okazaki and M. Kajiwara, Chem. Pharm. Bull., 1990, 38, 1058.
- 1231. K. L. Brown, H. B. Brooks, Xiang Zou, M. Victor, A. Ray and R. Tomkovich, *Inorg. Chem.*, 1990, 29, 4841.
- 1232. A. Lyčka and J. Čižmárik, Pharmazie, 1988, 43, 133.
- 1233. A. Lyčka and J. Čiźmárik, Pharmazie, 1987, 42, 271.
- 1234. J. Čižmárik and A. Lyčka, *Pharmazie*, 1988, 43, 794.
- 1235. R. Cervellati, D. G. Lister, A. Degli Espostiand F. Ortolani, II Nuovo Cimento, 1984, 3, 475.
- 1236. C. Stutz and D. Early, J. Mol. Struct., 1983, 111, 31.
- 1237. M. Gourdji, L. Guibé, A. Kaplan and A. Péneau, J. Mol. Struct., 1983, 111, 371.
- 1238. A. Péneau, M. Gourdji and L. Guibé, J. Mol. Struct., 1983, 111, 227.
- 1239. R. Ambrosetti, R. Angelone, A. Colligiani and J. Murgich, J. Mol. Struct., 1983, 111, 255.
- 1240. A. Lötz and J. Voitländer J. Magn. Reson., 1984, 58, 235.
- 1241. M. L. Buess and P. J. Bray, Org. Magn. Reson., 1984, 22, 233.
- 1242. E. A. Keiter, Y. Hiyama and T. L. Brown, J. Mol. Struct., 1983, 111, 1.
- 1243. B. Ancian and B. Tiffon, J. Chem. Soc. Faraday Trans., 1980, 80, 1076.
- 1244. J. Murgich, Magaly Santana R. and J. Abanero, Magn. Reson. Chem., 1985, 23, 145.

- 1245. R. Blinc, M. Vilfan and J. Seliger, Bull. Magn. Reson., 1983, 5, 51.
- 1246. A. Péneau, A. H. Fuchs, L. Guibé and H. Szwarc, C. R. Acad. Sci., 1984, 298, 551.
- 1247. Hisao Negita, Toshinori Suzuki, Tsuneo Kubo, Michio Maekawa, Shinei Gima and Tsutomu Okuda, Bull. Chem. Soc. Jpn, 1984, 57, 3378.
- 1248. V. L. Ermakov and D. Ya. Osokin, Mol. Phys., 1984, 53, 1335.
- 1249. S. V. Anferova, V. S. Grechishkin and N. Ya. Sinyavskii, Izv. Vyssh. Uchebn. Zaved. Fiz., 1985, 28, 110.
- 1250. G. A. Gartman, W. D. Pak and N. S. Kozłov, Wessh. Akad. Nauk Belorus. CCP, Ser. Chim. Nauk, 1984, 71.
- 1251. G. S. Beloglazov and V. S. Grechishkin, J. Strukt. Chim., 1984, 25, 61.
- 1252. P. M. Woyciesjes, N. Jones, S. Ganapathy, Y. Hiyama, T. L. Brown and E. Oldfield, Magn. Reson. Chem., 1985, 23, 315.
- 1253. P. J. Bray, R. V. Mulkern and S. G. Greenbaum, Magn. Reson. Chem., 1985, 23, 801.
- 1254. E. Hadjoudis, I. Moustakali-Mavridis, F. Milia, J. Seliger, R. Blinc and V. Zegar, Bull. Magn. Reson., 1984, 6, 116.
- 1255. S. W. Anferova, W. S. Grechishkin and W. P. Anferov, Teor. Elektr. Chim., 1985, 237.
- 1256. B. Kirste, M. Bock, H. Kurreck and R. Alder, XXII Congr. AMPERE Magn. Relat. Phenom Proc., 1984, 430.
- 1257. W. S. Grekhishkin, Fiz. Tverd. Tela, 1985, 27, 3425.
- 1258. K. V. Ermolaev, V. P. Tarasov and L. N. Erofeev, Prib. Tekh. Exp., 1985, 6, 112.
- 1259. J. Olliges, A. Lötz, J. Voitländer, H. Barfuss, G. Böhnlein, F. Gubitz, W. Ittner, G. Lanzendorfer, W. Kreische and B. Röseler, Z. Naturforsch., 1986, 41a, 203.
- 1260. T. L. Haslett, R. J. C. Brown, Y. S. Park and H. F. Shurvell, Z. Naturfosch., 1986, 41a, 335.
- 1261. B. Manallach, Z. Naturforsch., 1986, 41a, 396.
- 1262. A. Péneau, L. Guibé and C. Stutz, Nouv. J. Chim., 1985, 9, 427.
- 1263. R. J. Trepanier and M. A. Whitehead, Z. Naturforsch., 1986, 41a, 392.
- 1264. C. Bessada, A. H. Fuchs, A. Péneau and H. Szwarc, Z. Naturforsch., 1986, 41a, 348.
- 1265. A. Lötz, J. Voitländer and J. A. S. Smith, Z. Naturforsch., 1986, 41a, 206.
- 1266. A. Lötz, J. Voitländer, J. A. S. Smith, V. Hyna and H. Nöth, Chem. Phys., 1986, 103, 317.
- 1267. Shin-ichi Fukada, Keizo Horiuchi, Tetsuo Asaji and Daiyu Nakamura, Ber. Bunsenges. Chem. Phys., 1986, 90, 22.
- 1268. Y. Hiyama, E. A. Keiter and T. L. Brown, J. Magn. Reson., 1986, 67, 202.
- 1269. M. H. Frey and S. J. Opella, J. Magn. Reson., 1986, 66, 144.
- 1270. A. Lötz and J. Voitländer, Z. Naturforsch., 1986, 41a, 200.
- 1271. A. P. Cox, J. Randell and A. C. Legon, Chem. Phys. Lett., 1986, 126, 481.
- 1272. R. J. Trepanier and M. A. Whitehead, Z. Naturforsch., 1986, 41a, 386.
- 1273. G. E. Scuseria, T. J. Lee, R. J. Saykally and H. F. Schaefer III, J. Chem. Phys., 1986, 84, 5711.
- 1274. S. H. Choh, Y. J. Park and H. K. Kim, Jpn J. Appl. Phys., 1985, 24, Suppl. 242, 634.
- 1275. Masamoto Iwaizumi, Takanori Kudo and Shouichi Kita, Inorg. Chem., 1986, 25, 1546.
- 1276. E. J. Reijerse, N. A. J. M. van Aerle, C. P. Keijzers, R. Böttcher, R. Kirmse and J. Stach, J. Magn. Reson., 1986, 67, 114.
- 1277. C. J. Winscom, A. L. Maniero and K. Möbius, Chem. Phys. Lett., 1986, 128, 244.
- 1278. S. V. Anferova, V. S. Grechishkin and G. V. Mozzhukhin, Zh. Strukt. Khim., 1986, 27, 55.
- 1279. M. A. Whitehead and R. J. Trepanier, A. Mickiewicz Univer. Ser. Fiz. (Radio and Microwave Spectrosc.), 1985, 181.
- 1280. J. Olliges, A. Lötz, J. Voitländer, H. Barfuss, G. Böhnlein, F. Gubitz, W. Ittner, G. Lanzendorfer, W. Kreische and B. Röseler, J. Magn. Reson., 1986, 69, 302.

- 1281. R. Stryczek, J. Mol. Struct., 1986, 143, 297.
- 1282. C. Stutz, K. Garcia and S. Cochran, Z. Naturforsch., 1986, 41a, 399.
- 1283. A. Péneau, B. Manallah and L. Guibé, Z. Naturforsch., 1986, 41a, 192.
- 1284. J. Murgich and J. A. Abanero, J. Phys. Chem., 1986, 90, 6102.
- 1285. P. M. G. Bavin, D. Stephenson and J. A. S. Smith, Z. Naturforsch., 1986, 41a, 195.
- 1286. J. Murgich, J. A. Abanero, M. Santana R. and M. V. Capparelli, J. Chem. Phys., 1986, 85, 6047.
- 1287. T. Tsang, R. M. Fronko and H. A. Resing, J. Magn. Reson., 1987, 72, 315.
- 1288. S. R. Rabbani, D. T. Edmonds, P. Gosling and M. H. Palmer, J. Magn. Reson., 1987, 72, 230.
- 1289. Kaoru Yamanouchi, Shigeki Kato, Keiji Morokuma, Masaaki Sugie, Harutoshi Takeo, Chi Matsumura and Kozo Kuchitsu, J. Phys. Chem., 1987, 91, 828.
- 1290. J. Murgich, M. Santana and J. A. Abanero, Magn. Reson., Chem., 1987, 25, 115.
- 1291. Tae Ho Yeom and Sung Ho Choh, J. Korean. Phys. Soc., 1986, 19, 300.
- 1292. J. Murgich, Phys. Rev. B, 1987, 35, 3563.
- 1293. S. R. Rabbani, D. T. Edmonds and P. Gosling, J. Magn. Reson., 1987, 72, 422.
- 1294. S. V. Rodin, J. Seliger, R. Blinc and V. Sagar, Fiz. Tverd. Tela, 1987, 29, 1871.
- 1295. J. Murgich and T. Oja, J. Chem. Soc. Dalton Trans., 1987, 1637.
- 1296. J. Murgich and R. Ambrosetti, J. Magn. Reson., 1987, 74, 344.
- 1297. D. Stephenson and J. A. S. Smith, J. Chem. Soc. Faraday Trans. II, 1987, 83, 2123.
- 1298. M. H. Palmer, R. O. Gould, A. J. Blake, J. A. Smith, D. Stephenson and D. E. Ames, Chem. Phys., 1987, 112, 213.
- 1299. Bvrrk Murty, Gkrishna Kishore, D. Krishna Rao and G. Satynandam, Pramana J. Phys., 1987, 28, 45.
- 1300. T. Minamisono, Hyperfine Interactions, 1987, 35, 979.
- 1301. H. Kubota, K. Matsuta, Y. Nojiri, T. Minamisono, N. Itoh, T. Kawabata and S. Koike, Hyperfine Interactions 1987, 35, 605.
- 1302. T. Okuda, K. Yamada, H. Ishihara and S. Ichiba, Z. Naturforsch., 1987, 42b, 835.
- 1303. R. A. Marino, J. Murgich, M. Gourdji, A. Péneau and L. Guibé, Nouv. J. Chem., 1987, 11, 495.
- 1304. J. Seliger, V. Žagar, R. Blinc, R. Kind, H. Arend, G. Chapuis, K. J. Schenk and F. Milia, Z. Phys. B - Condensed Matter, 1987, 69, 379.
- 1305. D. Stephenson and J. A. S. Smith, Proc. R. Soc. Lond. A, 1988, 416, 149.
- 1306. S. V. Anferova, V. P. Anferov, N. Ya. Sinyavski and V. S. Grechishkin, Izv. Vyssh. Uchebn. Zaved., Fiz., 1987, 30, 61.
- 1307. J. Seliger and R. Blinc, Ferroelectrics, 1988, 78, 223.
- 1308. R. Janssen and V. S. Veeman, J. Chem. Soc. Faraday Trans. I, 1988, 84, 3747.
- 1309. F. Millia, Ferroelectrics, 1988, 78, 283.
- 1310. R. Blinc, J. Dolinšek, M. Luzar and J. Seliger, Liquid Cryst., 1988, 3, 663.
- 1311. V. P. Anferov and O. V. Starovoitova, Zh. Fiz. Khim., 1988, 62, 1663.
- 1312. V. S. Grechishkin, G. V. Mozzhukhin, N.Ya. Sinavskii and E. V. Yurepina, Izv. Vyssh. Uchebn. Zaved. Fiz., 1988, 48.
- 1313. Jae-Ryun Suhr, Chang-Ju Yoon, Seong-Gu Ro and Young-Sang Choi, Bull. Korean Chem. Soc., 1987, 8, 230.
- 1314. G. V. Boyd, M. M. P. Khurshid, G. A. Nicolaou and J. A. S. Smith, J. Chem. Soc. Perkin Trans. II, 1988, 933.
- 1315. Taro Eguchi, Michihiko Kishita, Nobuo Nakamura and Hideaki Chihara, J. Phys. Soc. Jpn, 1988, 57, 4375.
- 1316. Taro Eguchi, Koichi Mano and Nobuo Nakamura, Z. Naturforsch., 1989, 44a, 15.
- 1317. F. Milia, E. Hadjoudis and J. Seliger, J. Mol. Struct., 1988, 177, 191.

- 1318. N. Ya. Sinyavskii and V. S. Grechishkin, Izv. Vyssh. Uchebn. Zaved. Fiz., 1989, 32, 61.
- 1319. A. Colligiani, J. Murgich, R. Angelone and R. Ambrosetti, Phys. Rev. B, 1989, 39, 6765.
- 1320. J. Murgich, 24th Ampere Congress Proc., 1988, Poznan, p. 547.
- 1321. J. M. Baker, J. H. N. Loubser and M. E. Newton, 24th Ampere Congress. Proc., 1988, Poznań, p. 904.
- 1322. A. Péneau, M. Gourdji, L. Guibé and J. Murgich, Europhys. Lett., 1989, 9, 289.
- 1323. J. G. Yoon, S. I. Kwun and I. Yu, J. Korean Phys. Soc., 1988, 21, 304.
- 1324. S. Sharma, N. Weiden and A. Weiss, J. Chem. Phys., 1989, 90, 483.
- 1325. J. Seliger, V. Zager and R. Blinc, Z. Phys. B Condensed Matter, 1989, 77, 439.
- 1326. J. Seliger, V. Zagar, R. Blinc, E. Hadjoudis and F. Milia, Chem. Phys., 1990, 142, 237.
- 1327. J. Murgich, I. Bonalde and J. A. Abanero, Z. Naturforsch., 1990, 45a, 353.
- 1328. J. Murgich and I. Bonalde, Solid State Commun., 1990, 75, 309.
- 1329. Kee Tae Han, Tae Ho Yeom and Sung Ho Choh, Ferroelectrics, 1990, 107, 349.
- 1330. J. Murgich and I. Bonalde, Solid State Commun., 1990, 75, 309.
- 1331. V. S. Grekhishkin, R. V. Grekhishkina and O. V. Starovoitova, Zh. Strukt. Khim., 1989, 30, 149.

Index

Acetamide, nitrogen shieldings, 167	5-aminolevulinic acid, 187
Acetazolamide, nitrogen shielding, 425	glycine, 186
Acetonitrile	histidine, 185-186
¹⁵ N coupling constants, 79	see also Proteins/peptides
nematic phases, ¹⁴ N NMR, 31	Amino complexes, nitrogen shieldings,
N-Acetyl-amino acids, nitrogen	399-412
shieldings, 187–188	cobalt(III), 411
Acridine, nitrogen shieldings, 305	palladium(II), 410
Acrylamides, alkyl group shielding,	platinum(II), 399-409
37–38	platinum(IV), 410
Actinomycin D, nitrogen shieldings,	Amino compounds, nitrogen shieldings,
198–199	96-101 honor 114 117
Adenosine analogue, nitrogen	boron, 114–117
shieldings, 327	lead, 124
Adenosines, nitrogen shieldings, 318-	lithium, 125–126
320	phosphorus, 113–114
Alanine, nitrogen shieldings, 186	silicon, 117–122 tin, 122–124
polymers/copolymers, 201–202 Aluminium, ¹⁵ N coupling constants, 79	
Amanita phalloides toxins, nitrogen	see also Aza compounds, nitrogen shieldings
shieldings, 198	Amino groups, nitrogen NMR in, 47–48
Amides, nitrogen shieldings, 167–175	p-Amino groups, introgen NWK in, 47–48
benzamides, 171–172	shielding, 421
isoamides, 177–178	Aminoglutethimide, nitrogen shieldings,
	425
nicotinamide, 421 polymers, 175–176	5-Aminolevulinic acid, nitrogen
sulphenamides, 183	shieldings, 187
sulphinamides, 182–183 sulphonamides, 179–182	Aminophenazone, nitrogen shieldings, 427
thioamides, 178–179	
Amidines, nitrogen shieldings, 162–163	4-Aminophenazone, nitrogen
Amido moieties, 49–50	shieldings, 427 Ammonia
Amines, 61	liquid, as 'fictitious' standard, 13
nitrogen shieldings	nitrogen NMR in, 47
alkylamines, 88–91	nitrogen shieldings, 88
boron/silicon coordinated, 111–112	Ammonium ions
hydroxylamines, 135	nitrogen NMR in, 47
phosphorus bound, 113–114	nitrogen shieldings, 88
see also Arylamines, nitrogen	tetraalkylammonium, 95
shieldings	Ammonium moieties, nitrogen
Amino acids, 50–51	shieldings, 101–102
nitrogen shieldings, 185–187	Anaesthetics, nitrogen shieldings, 421-
N-acetyl, 187–188	423
alanine, 186	see also Drugs, nitrogen shieldings
uiumine, 100	see and Drugs, mitrogen smeldings

Analgesics, nitrogen shieldings, 427-428	pyridazines, 290–291
Angiotensin, nitrogen shieldings, 200	pyridines, 8, 282-290
Anilines, nitrogen NMR in, 48	pyrimidines, 291–295
see also Arylamines, nitrogen	quinazoline, 302
shieldings	quinolines, 298-302
Antamanide, nitrogen shieldings, 198	quinoxalines, 303–305
Antiepileptics, nitrogen shieldings, 424–	tetrazine, 298
426	triazines, 297–298
Antipyretics, nitrogen shieldings, 427–	
428	Azo compounds, 65
1-2	nitrogen shieldings, 369–372
Apamin, nitrogen shieldings, 188	cyanodiazo, 372-373
Apoflavodoxin, nitrogen shieldings	hydroxy-azo, 373
oxidized form, 314	imines, 378
reduced form, 315	Azo-hydrazone tautomers, nitrogen
8-Arginine-vasopressin, nitrogen	shielding, 46, 145-150
shieldings, 199	Azodioxy compounds, nitrogen
Aridicin aglycon, nitrogen shieldings,	shieldings, 375
196	Azole systems
Arylamines, nitrogen shieldings, 128-	nitrogen shieldings
130, 131–133	imidazoles, 240-245
and protonation, 40	mesoionic structures, 264-266
and substituents, 39	oxazoles/oxadiazoles, 256-259
see also Amines; Anilines, nitrogen	pentazoles, 255
NMR in	phosphazoles, 263–264
Arylammonium ions, nitrogen	pyrazoles, 235–240
shieldings, 130	pyrroles, 40, 225–235
Aza compounds, nitrogen shieldings,	tetrazoles, 252–255
91–95	
-	thiazoles/thiadiazoles, 260–263
Azacyclic systems, alkyl group	triazoles, 245–252
shielding, 38	pyrrole-type nitrogen atoms, 57
Azaindolizine systems, nitrogen	Azolo-azine systems, nitrogen
shielding, 57–58	shieldings, 270–281
Azaphenanthrenes, nitrogen shieldings,	indolizines, 270–274
306	purines, 275-277, 325-326
Azenes, nitrogen shieldings, 375-378	without bridgehead N, 277-281
Azides, nitrogen shieldings, 207-208	Azoxy compounds, nitrogen shieldings,
Azido, nitrogen shieldings, 54	373–375
Azine SO ₂ analogues, nitrogen	
shieldings, 312–313	
Azines	Bacteriophage T4 lysozyme, nitrogen
$^{3}J(^{15}N-X-Y-^{1}H)$ coupling, 72–73	shieldings, 191-193
nitrogen shieldings, 282-311	Bendiocarb, nitrogen shieldings, 427
acridine, 305	Benorilate, nitrogen shieldings, 427
azaphenanthrenes, 306	Benzamides, nitrogen shieldings, 171-
azolo-azines, 270–281	172
cinnoline, 302	polybenzamides, 175
phenazines, 305	
phthalazine, 302	Benzococaine, nitrogen shielding, 421
	Benzopyrazone, nitrogen shielding, 428
pyrazines, 41, 296–297	Bilirubins, nitrogen shieldings, 229

Biliverdins, nitrogen shieldings, 230 Clonazepam, nitrogen shielding, 426 CNDO calculations for nuclear Biotin, nitrogen shielding, 421 'Bipolarons', imine, 62 shielding, 7 Biuret, nitrogen shielding, 152 CNDO/2 calculations for spin-spin Bleomycin A2, nitrogen shieldings, 189 couplings, 9 Boratranes, nitrogen shieldings, 111 Cobalt Boron complexes, nitrogen shieldings amino, 411 amino compounds, nitrogen shieldings, 114-117 nitrosyl, 414-415 amino group coordinated, nitrogen ion (2+) as shift reagent, 36 ¹⁵N coupling constants, 79 shieldings, 111 ¹⁵N coupling constants, 79 Cocaine hydrochloride, nitrogen Bovine pancreatic trypsin inhibitor shielding, 421 (BPTI), nitrogen shieldings, 188 Coliphage λ -cro repressor protein, nitrogen shieldings, 194-195 Butanilicaine hydrochloride, nitrogen shielding, 423 Complexes amino, 399-412 cyano, 219-223 Calcium panthotenate, nitrogen diazenido, 396-398 shielding, 421 dinitrogen, 393-395 Calibration, see Referencing procedures dinitrogen ligand, 68 Calmodulin, nitrogen shieldings, 190heteroatomic, 59 hydrazides, 137-138 imino, 337-340 ε-Caprolactam, nitrogen shieldings, 169 Carbachole, nitrogen shielding, 427 nitride, 69, 417-418 Carbamates, nitrogen shieldings, 426-'nitro', 66 nitrosyl/thionitrosyl, 68-69, 413-417 Carbamazepine, nitrogen shielding, 426 see also by particular metal Carbazole, nitrogen shieldings, 227 Continuous wave (CW) technique, in Carbisocaine chloride, nitrogen 14N NMR, 15 shielding, 427 Conversion schemes, 85 Carbodiimides, nitrogen shielding, 166 Copper complexes Carbon-nitrogen couplings heteroaromatic, 59 multi-bond, 74 imino, nitrogen shieldings, 340 one-bond, 74 Coprobiliverdin, nitrogen shieldings, Carlsoprodole, nitrogen shielding, 426 230 β -Cellobiose octanitrate, nitrogen Correlation spectroscopy (COSY) three-dimensional, 22-23 shieldings, 362 Charge density, and nuclear shielding, hetero-hetero, 22-23 7 - 8homo-hetero, 22, 23 Chemically induced dynamic nuclear two-dimensional, 19-22 polarization (CIDNP), 32-33 reverse, 20-22 Chromium complexes, nitrosyl, straightforward, 19-20 Coupling constants, see 15N coupling nitrogen shieldings, 413 CIDNP, 32-33 constants Cinchocaine hydrochloride, nitrogen see also Spin-spin couplings shielding, 423 CPMAS (cross-polarization/magic Cinchophen, nitrogen shielding, 428 angle spinning), in ¹⁵N NMR, Cinnoline, nitrogen shielding, 302 27-30

CPMAS (cont.)	shielding/charge density correlations,
double cross-polarization	37
(DCPMAS), 30	and substituents on aromatic rings,
Creatinine, nitrogen shieldings, 242	39
Cross-polarization, in solid-state ¹⁴ N	Diazenes, 65
NMR, 26	nitrogen shieldings, 375
see also CPMAS (cross-polarization/	Diazenido complexes, nitrogen
magic angle spinning), in	shieldings, 396-398
15N NMR	Diazepam, nitrogen shielding, 426
Crystals, partially oriented, 30-31	Diazimines, nitrogen shielding, 5
see also Solid-state NMR	Diazines, nitrogen shieldings
Cyanamides, nitrogen shielding, 166	1,2-diazines, 290–291
Cyanates, nitrogen shieldings, 54	1,3-diazines, 291-295
covalent, 211	1,4-diazines, 296-297
Cyanide ions, nitrogen shieldings, 219	Diazo compounds, 64
Cyanides, nitrogen shieldings, 55-56,	nitrogen shieldings, 367
212-216	cyanodiazo, 372-373
Cyano complexes, nitrogen shieldings,	Diazoates, 64
219–223	nitrogen shieldings, 367-368
Cyanocobalamin, nitrogen shielding,	Diazonium ions, 64
419–420	Diazonium salts, nitrogen shieldings,
Cyanodiazo compounds, nitrogen	367
shieldings, 372–373	Dications, imine, 62
Cyclosporin A, nitrogen shieldings, 197	Dicyanamido anions, nitrogen
Cytidine analogue, nitrogen shieldings,	shielding, 166
326	Dicyanocobalamine, nitrogen shielding,
Cytidines, nitrogen shieldings, 323-324	420–421
Cytochrome c , nitrogen shieldings, 190	Dicyclofenac sodium, nitrogen
Cytochrome P-450 _{cam} , cyano ligands in,	shielding, 428
nitrogen shieldings, 222	Difference spectra methods in ¹⁵ N
g., 222	NMR, 24–25
	Diimides, nitrogen shieldings
7-Deazaguanosines, nitrogen shieldings,	carbodiimides, 166
324	sulphurdiimides, 348–349
Deazapurines, nitrogen shieldings, 276-	see also Imides, nitrogen shieldings
277	Dimethylformamide, nitrogen
7-deaza derivatives, 326	shieldings, 167
DEPT sequence, 18	solvent effects, 44
Deuterium, and nitrogen shielding, 34-	Dinitrogen, 67-68
35	imaging, ¹⁴ N NMR, 25
Devco, nitrogen shielding, 284	in internal referencing, 11–12
Dexpanthenol, nitrogen shielding, 421	¹⁵ N- ¹⁴ N spin-spin coupling, 8–9
Diamagnetic species, nitrogen shielding	nitrogen shieldings, 5, 392
in, 36-41	complexes, 393–395
alkyl group effects, 37–39	Diocaine hydrochloride, nitrogen
and protonation, 39-41	shielding, 423
range, 36–37	Diperodon, nitrogen shielding, 426
self-adjusting increments approach,	Dipolar dephasing ¹⁵ N CPMAS,
39	29

Dipolar rotational spin echo ¹⁵N Ferricytochromes, cyano ligands in, CPMAS, 29 nitrogen shieldings, 221-222 Ferrocytochrome c_2 , nitrogen Disodium cromoglycate liquid crystal, shieldings, 190 Double cross-polarization ¹⁵N MAS Ferrodoxin, 2-Fe-2S, nitrogen NMR, 30 shieldings, 193 Fibroins, silk, nitrogen shieldings, 196 Drugs, nitrogen shieldings anaesthetics, 421-423 Field gradients, electric, calculations, antiepileptics, 424-426 analgesics/antipyretics, 427-428 see also Magnetic field, orientation, carbamates, 426-427 and external referencing Dynamic nitrogen NMR, 33-34 Flavins, 59-60 nitrogen shieldings in, 314-316 oxidized forms, 314-315 Electric field gradients, calculations, reduced forms, 315-316 10 - 11protonation, and nitrogen shielding, see also Magnetic field, orientation, and external referencing see also Pterin systems, nitrogen Enamines/enaminones shieldings enamine-imino tautomerism, 61-62 Flavodoxin, nitrogen shieldings nitrogen shieldings, 105-110 Anabaena 7120, 194 Enamino moieties, nitrogen NMR oxidized form, 315 studies, 48 reduced form, 316 Flow-cells, in ¹⁵N NMR, 16 Fluorine, ¹⁵N-¹⁹F couplings, 77-78 Ethosuximide, nitrogen shielding, 424 Ethyl urethane, nitrogen shielding, 426 Experimental techniques, 14-34 Fomocaine hydrochloride, nitrogen chemically induced dynamic nuclear shielding, 422 polarization (CIDNP), 32-33 Formamide dynamic nitrogen NMR, 33-34 hydration, and nuclear shielding, 6 liquids/solutions nitrogen shieldings, 167 ¹⁴N NMR, 15 temperature effects, and proton ¹⁵N NMR, see Liquids/solutions: decoupling, 14 ¹⁵N NMR techniques Fulminates, nitrogen shieldings, 55, 217 partially oriented crystals, NMR in, Furazans, nitro compounds, nitrogen 30 - 31shieldings, 356-357 quantitative nitrogen NMR, 31-32 Furoxans, nitrogen shieldings, 259 solid-state ¹⁴N NMR, 25-26 cross-polarization MAS in, 30 solid-state ¹⁵N NMR, 26-30 CPMAS, 27-30 Gauge included atomic orbitals DCPMAS, 30 (GIAO) method, 6 MASS, 27 Glycine, nitrogen shieldings, 186 single-crystal, 26-27

Fenacaine hydrochloride, nitrogen shielding, 423

static powder spectra, 27

static powder, 27

Gauge included atomic orbitals
(GIAO) method, 6
Glycine, nitrogen shieldings, 186
Gramicidin A, nitrogen shieldings, 196
Guanidines/guanidinium ions, nitrogen shieldings, 161-162
N-nitroguanidine, 365
Guanosines, nitrogen shieldings, 320-322
in RNA, 330

Haemoprotein-cyano units, nitrogen	Imides, nitrogen shieldings, 176-177
shieldings, 221	see also Diimides, nitrogen shieldings
Hammet equation, for aromatic	Imines, 61–62
substituent effects, 39	nitrogen shieldings, 336-343
Hartree-Fock shielding calculations, 5	azo compounds, 378
Heptacaine chloride, nitrogen shielding,	complexes, 337-340
427	ethylene, 5
Heptobarbital, nitrogen shielding, 424	ketenimines, 343
Heteroaromatic systems	nitrones, 343
complexes, 59	oximes, 162, 163, 344-346
¹⁵ N labelling studies, 58	Individual gauge for localized orbitals
nitrogen shielding calculation, 58	(IGLO) method, 4-5
pyridine-type nitrogen atoms, 56-57	INDO calculations for spin-spin
pyrrole-type nitrogen atoms, 57-58	couplings, 9
Heteronuclear multiple quantum	INDO/S calculations for nuclear
correlation (HMQC) in 2-D	shielding, 7
COSY, 20-21	Indolizine systems, nitrogen shieldings,
Heteronuclear single quantum	270–274
correlation (HSQC) methods, 22	Indomethacin, nitrogen shielding, 428
Histidine, nitrogen shieldings, 185-186	INDOR (internuclear double
Human N-ras p21 protein, nitrogen	resonance), ¹ H{ ¹⁵ N}, 24
shieldings, 195	INEPT pulse sequence, 16-18
Hydrazides, nitrogen shieldings, 135-	non-selective, 17–18
137	selective, 18
complexes, 137-138	Inosine, nitrogen shieldings, 322
Hydrazines, nitrogen shieldings, 135	Interrupted decoupling ¹⁵ N CPMAS, 29
Hydrazones	Iron
nitrogen NMR in, 48	¹⁵ N coupling constants, 79
nitrogen shieldings, 140-151	nitrosyl complexes, nitrogen
azoarene tautomers, 369–371	shieldings, 416
azo-tautomers, 46, 145–150	Isoamides, nitrogen shieldings, 177-178
non-tautomeric, 140–145	Isocyanate ion, nitrogen shieldings, 211
Hydrogen bonding, and nitrogen	Isocyanates, nitrogen shieldings, 54
shielding, 6	covalent, 211
solvent effects, 43, 44	Isocyanides, nitrogen shieldings, 55
Hydroxamic acids, nitrogen shieldings,	covalent, 217–219
179	4-Isopropylaminophenazone
Hydroxy-azo compounds, nitrogen	hydrochloride, nitrogen
shieldings, 373	shielding, 427
Hydroxylamines, nitrogen shieldings,	Isoquinolines, nitrogen shieldings, 301–
135	
133	302 Isothiograpates nitrogen shieldings
	Isothiocyanates, nitrogen shieldings, 54–55
Imaging, ¹⁴ N NMR, liquid nitrogen/	covalent, 209
high-temperature	ions/ligands, 210
superconductor, 25	Isotopes and nitrogen shielding, 34-36
Imidazoles, nitrogen shieldings, 240-	carbon-13, 35
245	deuterium, 34-35
hydration and, 6	nitrogen-14, 35
tautomerism and, 46	oxygen-18, 35–36

Isoxazoles, nitro compounds, nitrogen shieldings, 356-357	Magnetic field, orientation, and external referencing, 12
•	MAS spectra, bulk susceptibility effects, 14
Kamlet-Taft analysis, and solvents, 42-43	see also CPMAS (cross-polarization/ magic angle spinning), in
Ketazone, nitrogen shielding, 428	¹⁵ N NMR MASS spectra, ¹⁵ N, 27
Ketenimines, 61 nitrogen shieldings, 343	Mefenamic acid, nitrogen shielding, 424 Mephenytoin, nitrogen shielding, 424 Meprobamate, nitrogen shielding, 426
Lanthanide chelates as shift reagents, 36	Mercury, amino complexes, ¹⁵ N coupling constants, 80
Lead	Mesoionic azole systems, nitrogen
amino compounds, nitrogen shieldings, 124	shieldings, 264-266 Metals, see Complexes; Transition
¹⁵ N coupling constants, 79	metals
Leu-enkephalin, nitrogen shieldings,	see also by particular metal
200	Methyl nitrate, nitrogen shieldings, 355
Liquid crystal solutions, NMR in, 31	Methyl-β-D-glucopyranoside
Liquids/solutions	tetranitrate, nitrogen shieldings,
¹⁴ N NMR techniques, 15 ¹⁵ N NMR techniques, 16–25	362 Mitomycin C, nitrogen shieldings, 106
combination techniques, 24	Molybdenum
DEPT sequence, 18	¹⁵ N coupling constants, 79
difference spectra methods, 24-25	nitrosyl complexes, nitrogen
flow-cells, 16	shieldings, 413, 417
four-dimensional techniques, 23-24	
heteronuclear magnetization	
transfer, 18–19	¹⁴ N
¹ H { ¹⁵ N} INDOR, 24 INEPT pulse sequence, 16–18	coupling constants, conversion to ¹⁵ N, 69
low sensitivity of, 16	and ¹⁵ N NMR shieldings, 35
¹⁵ N enrichment, 16	nuclear quadrupole moment
three-dimensional COSY, 22–23	calculations, 10
two-dimensional techniques, 19–22, 24	¹⁵ N coupling constants, 70–80
partial oriented crystals in, 30–31	aluminium, 79
Lithium	boron, 79 carbon-nitrogen, 74–75
amino compounds, nitrogen	conversion from ¹⁴ N, 70
shieldings, 125-126	¹ J(¹⁵ N- ¹³ C), 73-74
¹⁵ N coupling constants, 79	¹ J(¹³ N- ¹ H), 70-71
Localized orbital/local origin (LORG)	1 J(15 N- 17 O), 80
shielding calculations, 5-6	$^{2}J(^{15}N-X-^{1}H), 72$
Luciferase, bacterial, nitrogen	³ J(¹⁵ N-X-Y- ¹ H), 72–73
shieldings, 314 Lumazine protein, nitrogen shieldings,	lead, 79
316	lithium, 79 ¹⁵ N- ¹⁹ F, 77-78
Lysozyme, bacteriophage T4, nitrogen	¹⁵ N- ¹ H, long-range, 73
shieldings, 191–193	¹⁵ N- ¹⁵ N, 75-76
-	

ISNT	
15N coupling constants (cont.)	compounds
¹⁵ N- ³¹ P, 76-77	Nitrogen-oxygen ions, 68
platinum, 78	nitrogen shieldings, 390–391
silicon, 78–79	Nitrogen, see Dinitrogen; ¹⁴ N; ¹⁵ N
tin, 79	coupling constants
transition metals, 79–80	Nitrones, 61
xenon, 80	nitrogen shieldings, 343
Neostygmine bromide, nitrogen	Nitroso compounds, 66-67
shielding, 427	nitrogen shieldings, 380, 381-382
Nicotinamide, nitrogen shielding, 421	dimers, 375
Nicotinic acid, nitrogen shielding, 421	Nitroso group, nitrogen shielding
Nitramines, nitrogen shieldings, 360,	solvent effects, 44-45
361, 362	Nitrosyl/thionitrosyl complexes, 69
Nitrates, 63–64	nitrogen shieldings, 413-417
nitrogen shieldings	Nuclear Overhauser effect correlation
β -cellobiose octanitrate, 362	spectroscopy (NOESY), ¹⁵ N,
methyl, 355	23-24
methyl- β -D-glucopyranoside	Nuclear shielding theory, 3-8
tetranitrate, 362	and charge density, 7-8
Nitric acid, nitrogen shieldings, 363,	GIAO method, 6
391	Hartree-Fock shielding calculations,
Nitride complexes, 69	5
nitrogen shieldings, 417-418	IGLO procedure, agreement with
Nitriles	experiment, 4-5
alkyl group shielding, 38	independent particle model, 8
electric field gradients, 10	LORG procedure, 5-6
nitrogen shieldings, 55-56	MM2 force field calculations, 8
N-oxides, 217	semiempirical molecular orbital
protonation and, 40	techniques, 7
Nitrilium ions, nitrogen shieldings,	SOPPA approximation, 5
216–217	Nucleic acids, shielding calculations, 6
Nitrites, nitrogen shieldings, 380-381	Nucleosides/nucleotides, 60
Nitrito group, 66	nitrogen shieldings, 318–331
'Nitro' complexes, 66	adenosine analogue, 327
Nitro compounds, 63	adenosines, 318–320
nitrogen shieldings, 355–366	cytidine analogue, 326
nitrobenzenes, 356, 357–358	cytidines, 323–324
4-nitrofenetol, 428	7-deazaguanosines, 324
4-nitroguanidine, 365	7-deazapurines, 326
nitromethane, 355	guanosines, 320–322
nitrosamines, 382–387	inosine, 322
nitrotoluenes, 356	purines, 325–326
nitroalkanes, 63	pyrimidones, 328
nitromethane as shielding reference,	in RNA, 329–330
13, 14	thymidine, 323
nitrosamines, 66–67	tubercidins, 324
Nitro groups, 63	uridines, 322–323
Nitrogen oxides, 68	wyosines, 325
nitrogen shieldings, 390-391	xanthosine, 322
see also Nitrates; Nitrites; Nitro	Nylons, nitrogen shieldings, 176
see and initiates, initiates, initio	rayions, introgen sincidings, 170

Ortofomacaine hydrochloride, nitrogen shielding, 422	Phosphocreatinine, nitrogen shieldings, 242
Ortoform, nitrogen shieldings, 421	Phosphorus
Overhauser effects, in ¹⁵ N NMR, 31	amino compounds, nitrogen
nuclear correlation spectroscopy, 23-	shieldings, 113-114
24	¹⁵ N- ³¹ P couplings, 76-77
Overtone ¹⁴ N NMR transitions, solid	Phthalazine, nitrogen shielding, 302
state, 25-26	Physostygmine, nitrogen shielding, 427
Oxazepam, nitrogen shielding, 426	'Piano-stool' nitrosyl complexes, 413
Oxazole/oxadiazole systems, nitrogen	Platinum
shieldings, 256-259	amino complexes, nitrogen shieldings
Oximes, 61	Pt(II), 399–409
nitrogen shieldings, 162, 163, 344-	Pt(IV), 410
346	15N coupling constants, 78
Oxygen-18, and nitrogen shielding, 35-	Polarization transfer (PT), in sensitivity
36	enhancement, 16–18
Oxytocin, nitrogen shieldings, 199	DEPT sequence, 18
	INEPT sequence, 16–18 Polymers
D. H. C.	amide, nitrogen shieldings, 175–176
Palladium complexes, nitrogen	¹⁵ N CPMAS NMR, 28
shieldings	Porphin, nitrogen shieldings, 233
amino, 410 imino, 337	Porphycen, nitrogen shieldings, 233
Panthotenic acid, nitrogen shielding, 421	Porphyrin complexes, nitrogen
Paracetamol, nitrogen shielding, 427	shieldings
Partially oriented crystals, NMR in,	cyano Fe(III), 221
30–31	low-spin Fe(III), cyano ligands, 222-
Pentacaine chloride, nitrogen shielding,	223
427	Powder NMR
trans-Pentalene, nitrogen shieldings,	¹⁴ N, 26
264	15N, static, 27
Pentazole ring system, nitrogen	Powdery solids, ¹⁴ N NMR 26
shieldings, 255	Primidone, nitrogen shielding, 425 Procaine hydrochloride, nitrogen
Peptides, see Proteins/peptides	shielding, 421
Pfl filamentous bacteriophage coat	Proteins/peptides, 50, 51-54
protein, nitrogen shieldings, 194	nitrogen assimilation studies, 53
Phenacemide, nitrogen shielding, 425 Phenacetin, nitrogen shielding, 427	nitrogen shieldings, 51-52, 188-203
Phenazines, nitrogen shieldings in, 305	see by named compound
Phenazone, nitrogen shielding, 427	15N CPMAS NMR, 28
p-Phenetidine, nitrogen shielding, 428	Proton decoupling, and temperature, 14
Phenobarbital, nitrogen shielding, 424	Proton transfers, in 15N-labelled
Phensuximide, nitrogen shielding, 424	molecules, 33
Phenylbutazone, nitrogen shielding, 428	Proton-nitrogen couplings, 71
Phenytoin, nitrogen shielding, 424	Protonation
Phosphazenes/phosphazoles, 61	of pyridine-type nitrogen atoms, 57
nitrogen shieldings, 263-264, 332-335	and shielding in diamagnetic species,
cyclic, 333–334	39–41
Phosphazoles, nitrogen shieldings, 263-	Pterin systems, nitrogen shieldings, 316 see also Flavins
264	see also Flavilis

Pulsed Fourier-transform (PFT) NMR for liquid/solution spectra	Referencing procedures external, 12
¹⁴ N NMR, 15 ¹⁵ N NMR, 16	analogous reference substances, 13-14
problems for quantitative NMR, 31-32	bulk susceptibility effects, 12–13,
Purines, nitrogen shieldings, 275-277 derivatives, 325-326	'fictitious' ammonia standard, 13 nitromethane as primary standard,
Pyrazines, nitrogen shieldings, 296–297 protonation and, 41	13 shieldings of reference substances,
Pyrazole ring systems, nitrogen shieldings, 235-240	86-87 and temperature, 14
Pyrazones, benzopyrazone, nitrogen shielding, 428	internal, 11–12 solid samples, 14
Pyridazines, nitrogen shieldings, 290-291	Relaxation phenomena, 80-82 14N, 80-81
Pyridine, partial orientation in solution, 30	¹⁵ N, 81-82 Retinal, nitrogen shieldings, 340
Pyridine-type N atoms, 56 nitrogen shielding, 56-57	Rhodium, ¹⁵ N coupling constants, 79–80
and solvent polarity, 43-44 Pyridines, nitrogen shieldings, 282-290	Riboflavin, nitrogen shieldings, 315,
calculations, 8	Ribonuclease A, nitrogen shieldings,
Pyridoxol/pyridoxal/pyridoxamine hydrochlorides, 419	RNA, nucleoside units in, nitrogen
Pyrimidine ¹⁵ N NMR, ¹⁵ N enrichment, 16	shieldings, 329–330
partial orientation in solution, 30 Pyrimidines, nitrogen shieldings in,	Salacetamide, nitrogen shielding, 428
291–295	Salicylamide, nitrogen shielding, 427
Pyrimidone derivatives, nitrogen shieldings, 328	Second-order polarization propagator theory (SOPPA), 5
Pyrrocaine hydrochloride, nitrogen shielding, 422	Shielding theory, see Nuclear shielding theory
Pyrrole-type nitrogen atoms, 57	Shift reagents, 36
nitrogen shielding, 57-58 Pyrroles, nitrogen shieldings, 225-235	Sign conventions, 11 Silatranes, nitrogen shieldings, 111–112
protonation, 40	Silicon amino compounds, 117–122
Quantitative nitrogen NMR, 31-32 Quinazoline, nitrogen shielding, 302	amino group coordinated, 111–112 ¹⁵ N coupling constants, 78–79
Quinolines, nitrogen shieldings, 298-302	nitrides, 69, 418 Silk fibroins, nitrogen shieldings, 196
isoquinolines, 301–302	Silver imino complexes
Quinoxalines, nitrogen shieldings, 303-305	¹⁵ N coupling constants, 80 nitrogen shieldings, 338–339, 340
Radical pairs, and resonance intensity,	salts, as shift reagents, 36 SINEPT, 17
32–33	Single crystal spectra, ¹⁴ N NMR, 26

Solid-state NMR	enamine-imine, 61-62
¹⁴ N, 25–26	nitrogen shielding in, 45-46
CPMAS, 30	solid-state studies, 48
¹⁵ N, 26–30	Temperature, and nitrogen shieldings,
CPMAS, 27-30	14
DCPMAS, 30	Tetraalkylammonium ions, nitrogen
MASS, 27	shieldings, 95
single-crystal, 26-27	Tetracaine hydrochloride, nitrogen
static powder, 27	shielding, 422
Solutions, see Liquids/solutions	Tetrazenes, 65
Solvents, and nitrogen shielding, 41-45	nitrogen shieldings, 378
examples, 41–42	Tetrazine, nitrogen shieldings, 298
and hydrogen bonding, 43, 44	Tetrazole ring systems, nitrogen
Kamlet-Taft analysis system, 42–43	shieldings, 252–255
and polarity, 43–44	Thiamine dihydrochloride, nitrogen
Spin-spin couplings	shieldings, 419
long-range, in reverse heteronuclear	Thiazole/thiadiazole ring systems,
COSY, 20-21	nitrogen shieldings, 260-263
in ¹⁴ N spectra, 15	Thioamides, nitrogen shieldings, 125,
theoretical calculations, 8-9	178–179
see also 15N coupling constants	Thiocyanates, nitrogen shieldings, 54
Standards, see Referencing procedures	covalent, 209-210
Staphylococcal nuclease, nitrogen	ions/ligands, 210
shieldings, 189	Thionitrosyl complexes, 69
Stovaine hydrochloride, nitrogen	nitrogen shieldings, 413-417
shielding, 422	Thioredoxin, Escherichia coli, nitrogen
Streptomyces subtilisin inhibitor (SSI),	shieldings, 194
nitrogen shieldings, 195	Thioureas, nitrogen shielding, 157-161
Succinate, nitrogen shielding, 426	Thymidine, nitrogen shieldings, 323
Sulphenamides, nitrogen shieldings, 183	Tin
Sulphinamides, nitrogen shieldings,	amino compounds, nitrogen
182–183	shieldings, 122-124
Sulphonamides, 50	¹⁵ N coupling constants, 79
nitrogen shieldings, 179–182	Transition metals, ¹⁵ N coupling
Sulphur-nitrogen bonds, 62	constants, 79–80
Sulphur-nitrogen compounds, nitrogen	see also by particular metal
shielding in, 348-354	Triazenes, 65
sulphurdiimides, 348-349	nitrogen shieldings, 375-378
Sultiame, nitrogen shielding, 425	Triazines, nitrogen shieldings, 297-298
Superconductors, in ¹⁴ N NMR	Triazole ring systems, nitrogen
dinitrogen imaging, 25	shieldings, 245–252
Supercritical fluids as solvents, 15, 80	1,2,3/1,2,5 triazoles, 245-247
Surfactants, ¹⁴ N spectra, quadrupole	1,2,4/1,3,4 triazoles, 248-252
splittings, 31	Tribuzone, nitrogen shielding, 428
Sydnone, nitrogen shieldings, 265	Trimecaine hydrochloride, nitrogen
Total	shielding, 423
Tautomers	Trimethadione, nitrogen shielding, 424
azo, nitrogen shieldings, 46, 145-150	Trimethoprim, nitrogen shieldings,
azoarene, nitrogen shieldings, 369– 371	292–293
3/1	protonation and, 40

Tropacocaine hydrochloride, nitrogen shielding, 421
Tubercidins, nitrogen shieldings, 324
Tungsten, ¹⁵N coupling constants, 79
Tungsten complexes, nitrogen shieldings nitride, 417, 418 nitrosyl, 413
Turkey ovomucoid third domain (OMTKY 3), nitrogen

Ureas, nitrogen shielding, 152-157 Urethanes, ethyl, nitrogen shieldings, 426 Uridines, nitrogen shieldings, 322-323 in RNA, 329-330

shieldings, 194

Van der Waals forces, and nitrogen shielding, 8 Vanadium, ¹⁵N coupling constants, 79 Vancomycin, nitrogen shieldings, 200 Vasopressin, 8-arginine, nitrogen shieldings, 199 Vitamins, nitrogen shieldings, 419–421

Wyosines, nitrogen shieldings, 325

Xanthosine, nitrogen shieldings, 322 Xenon, ¹⁵N coupling constants, 80 Xylocaine, nitrogen shielding, 423

Zero-field NMR, proton-¹⁴N double resonance, 25